资源简介
MOPSO多目标粒子群优化算法MATLAB实现(可直接运行).zip
代码片段和文件信息
% ackley.m
% Ackley‘s function from http://www.cs.vu.nl/~gusz/ecbook/slides/16
% and further shown at:
% http://clerc.maurice.free.fr/pso/Semi-continuous_challenge/Semi-continuous_challenge.htm
%
% commonly used to test optimization/global minimization problems
%
% f(x)= [ 20 + e ...
% -20*exp(-0.2*sqrt((1/n)*sum(x.^22))) ...
% -exp((1/n)*sum(cos(2*pi*x)2))];
%
% dimension n = # of columns of input x1 x2 ... xn
% each row is processed independently
% you can feed in matrices of timeXdim no prob
%
% example: cost = ackley([123;456])
function [Y]=ackley(xflag)
% global P
global T
% x=mapminmax(‘apply‘x(1:)‘P); %1X5
% x=x‘;
W2=[0.9835136494256450.01563954943995360.6125786901082210.3489497724330000.2661660790057640.1249473531786400.923296305479215-0.530232046763045-0.327659275580791-0.646199831676460;-0.3092313462250980.5964143962361880.3970023238308020.2064339286671960.7204927463435450.199389937406352-0.116765991949494-0.370247577740941-0.154903175718849-0.507975216600424;0.128681017244323-0.5243172862294230.1860567416798190.5557304471719810.5312758651676250.1825581380136020.3849610257965180.3852767826939360.6052360263953290.456005242346597];
W1=[-0.8699367938898670.3257792853478920.1740379724704580.295236135069579-0.273241174515210;-0.558186480531010-0.1866963219275050.5629365889565970.9741805616093980.674207406347660;0.155857579269969-0.265768777238990-0.874132188809125-0.08278750954578660.370921943805725;0.0131249090186139-0.2019826189640500.519301705908160-0.8639727271711520.987929292098583;0.4338341774898950.8869245271003490.274107586179760-0.3038596989772150.422001002322857;-0.371103364530077-0.560145560430240-0.8250197965604910.661826279134213-0.310314984764697;-0.170958734188943-0.4235446953425730.691412124257754-0.3299840372336510.0755035626115093;0.136436814280577-0.06554861612537000.0170589401427046-0.423034172683370-0.665773389641811;0.413456404045930-0.6821261718029810.517447538050501-0.7833985695762210.650999262711329;-0.7337530967889000.05039551691924740.697086294190505-0.6366726206069970.121973937413338];
B1=[0.263524090679658;0.619752887788955;-0.323729827867708;0.820582965938063;0.392485096567817;-0.966033068034410;0.228122237322837;0.0332417952094948;-0.184288988372871;0.841419482048720];
B2=[0.222608902861025;-0.0339919509291149;-0.511468813194705];
F(:1)=W2(1:)*(2./(1+exp(-2*(W1*x(1:)‘+B1)))-1)+B2(1);
F(:2)=W2(2:)*(2./(1+exp(-2*(W1*x(1:)‘+B1)))-1)+B2(2);
F(:3)=W2(3:)*(2./(1+exp(-2*(W1*x(1:)‘+B1)))-1)+B2(3);
f(1:)=mapminmax(‘reverse‘F(1:)‘T); %1X5
if flag==0
Y=norm(F);
else
Y=f;
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 82080 2019-11-24 14:27 MOPSO\500PD-fordelPD.xlsx
文件 2698 2019-11-27 13:14 MOPSO\ackley.m
文件 70795 2019-11-27 19:54 MOPSO\matlab.mat
文件 2539 2019-11-27 13:23 MOPSO\MOPOS_main.m
相关资源
- 多目标跟踪 论文+代码
- 粒子群算法优化pid源码 matlab仿真.ra
- pso解决单目标优化问题
- 基本粒子群算法,MATLAB文件的M文件编
- matlab粒子群算法PSO实现函数极值优化
- matlab源码的IMM交互多目标单目标跟踪
- 多目标规划的求解方法及matlab程序
- MATLAB实现群体多目标优化算法MOALO蚁狮
- 多目标函数优化
- PSO负载均衡算法-matlab实现
- l粒子群算法工具箱psot
- 粒子滤波多目标跟踪
- 多目标优化文档及代码
- 多目标优化算法
- PSO_LSSVM程序代码及LSSVM工具箱
- 超完整规范的多目标遗传优化算法M
- MATLAB 目标追踪单目标、多目标 可以运
- platEMO内涵几乎所有多目标优化问题的
- Matlab编写多目标优化算法NSGA-Ⅱ的详解
- libsvm-3.1-[FarutoUltimate3.1
- PSO优化模糊控制器进行电动汽车能量
- 两个经典的多目标优化算法代码:N
- 多目标粒子群社团检测算法MODPSO
- PSO优化SVM参数matlab
- matlab多目标跟踪算法及数据集
- 蜂群SVMABC-SVM遗传算法SVMGA-SVM粒子群
- 遗传粒子群优化算法-GAPSO.rar
- pso优化bp神经网络代码
- MATLAB 多目标粒子群算法源代码
- 粒子群优化算法matlab编写,共十三种
评论
共有 条评论