资源简介
信号分解,地震资料分解,都非常实用,而且是可以用的
代码片段和文件信息
function [u u_hat omega] = VMD(signal alpha tau K DC init tol)
% Variational Mode Decomposition
% Authors: Konstantin Dragomiretskiy and Dominique Zosso
% zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso
% Initial release 2013-12-12 (c) 2013
%
% Input and Parameters:
% ---------------------
% signal - the time domain signal (1D) to be decomposed
% alpha - the balancing parameter of the data-fidelity constraint
% tau - time-step of the dual ascent ( pick 0 for noise-slack )
% K - the number of modes to be recovered
% DC - true if the first mode is put and kept at DC (0-freq)
% init - 0 = all omegas start at 0
% 1 = all omegas start uniformly distributed
% 2 = all omegas initialized randomly
% tol - tolerance of convergence criterion; typically around 1e-6
%
% Output:
% -------
% u - the collection of decomposed modes
% u_hat - spectra of the modes
% omega - estimated mode center-frequencies
%
% When using this code please do cite our paper:
% -----------------------------------------------
% K. Dragomiretskiy D. Zosso Variational Mode Decomposition IEEE Trans.
% on Signal Processing (in press)
% please check here for update reference:
% http://dx.doi.org/10.1109/TSP.2013.2288675
%---------- Preparations
% Period and sampling frequency of input signal
save_T = length(signal);
fs = 1/save_T;
% extend the signal by mirroring
T = save_T;
f_mirror(1:T/2) = signal(T/2:-1:1);
f_mirror(T/2+1:3*T/2) = signal;
f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1);
f = f_mirror;
% Time Domain 0 to T (of mirrored signal)
T = length(f);
t = (1:T)/T;
% Spectral Domain discretization
freqs = t-0.5-1/T;
% Maximum number of iterations (if not converged yet then it won‘t anyway)
N = 500;
% For future generalizations: individual alpha for each mode
Alpha = alpha*ones(1K);
% Construct and center f_hat
f_hat = fftshift((fft(f)));
f_hat_plus = f_hat;
f_hat_plus(1:T/2) = 0;
% matrix keeping track of every iterant // could be discarded for mem
u_hat_plus = zeros(N length(freqs) K);
% Initialization of omega_k
omega_plus = zeros(N K);
switch init
case 1
for i = 1:K
omega_plus(1i) = (0.5/K)*(i-1);
end
case 2
omega_plus(1:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1K)));
otherwise
- 上一篇:逆变双闭环,simuli
nk - 下一篇:串级控制仿真
相关资源
- eemd分解和作图
- 基于MATLAB的心电信号分析及滤波
-
matlab心电信号分析与simuli
nk仿真成果 - EMD HHT Matlab 信号分析,Google英文原版
- FASTICA盲源信号分离代码Matlab
- 基于LABWINDOWS/CVI的信号分析仪设计
- MATLAB在语音信号分析与合成中的应用
- MATLAB在语音信号分析与合成中的应用
- 信号分析与处理——MATLAB语言及应用
- MATLAB程序——癫痫病人的脑电信号提
- 《Matlab语音信号分析与合成》第2版程
- MATLAB语音信号分析与合成代码
- 基于matlab语音信号分析的低通高通滤
- MATLAB在语音信号分析和合成中的应
- 盲信号分离
- 终于找到了 MATLAB在语音信号分析与合
- MATLAB在语音信号分析与合成中的应用
- 基于自然梯度算法的盲信号分离程序
- MATLAB GUI语音信号分析
- 盲信号分离算法 matlab
- ICA负熵万能算法详细说明
- 课程设计:基于MATLAB的语音信号分析
- 基于 MATLAB 的语音信号分析与处理的课
- MATLAB仿真在信号处理中的应用、数字
- 基于matlab的心电信号分析
- 产生LFM信号分析其频谱运用频域匹配
- 基于FFT的频谱信号分析Matlab程序
- 信号分析与处理实验报告FFTMATLAB
- 基于matlab的语音信号分析与处理
- 语音信号处理实验报告基于MATLAB的语
评论
共有 条评论