资源简介
无迹粒子滤波跟踪,内附matlab code 和相关文献。
代码片段和文件信息
% PURPOSE : Demonstrate the differences between the following
% filters on an options pricing problem.
%
% 1) Extended Kalman Filter (EKF)
% 2) Unscented Kalman Filter (UKF)
% 3) Particle Filter (PF)
% 4) PF with EKF proposal (PFEKF)
% 5) PF with UKF proposal (PFUKF)
% For more details refer to:
% AUTHORS : Nando de Freitas (jfgf@cs.berkeley.edu)
% Rudolph van der Merwe (rvdmerwe@ece.ogi.edu)
% + We re-used a bit of code by Mahesan Niranjan.
% DATE : 17 August 2000
clear all;
echo off;
path(‘./ukf‘path);
path(‘./data‘path);
% INITIALISATION AND PARAMETERS:
% ==============================
doPlot = 0; % 1 plot online. 0 = only plot at the end.
g1 = 3; % Paramater of Gamma transition prior.
g2 = 2; % Parameter of Gamman transition prior.
% Thus mean = 3/2 and var = 3/4.
T = 204; % Number of time steps.
R = diag([1e-5 1e-5]); % EKF‘s measurement noise variance.
Q = diag([1e-7 1e-5]); % EKF‘s process noise variance.
P01 = 0.1; % EKF‘s initial variance of the
% interest rate.
P02 = 0.1; % EKF‘s initial variance of the volatility.
N = 10; % Number of particles.
optionNumber = 1; % There are 5 pairs of options.
resamplingScheme = 1; % The possible choices are
% systematic sampling (2)
% residual (1)
% and multinomial (3).
% They‘re all O(N) algorithms.
P01_ukf = 0.1;
P02_ukf = 0.1;
Q_ukf = Q;
R_ukf = R;
initr = .01;
initsig = .15;
Q_pfekf = 10*1e-5*eye(2);
R_pfekf = 1e-6*eye(2);
Q_pfukf = Q_pfekf;
R_pfukf = R_pfekf;
alpha = 1; % UKF : point scaling parameter
beta = 2; % UKF : scaling parameter for higher order terms of Taylor series expansion
kappa = 1; % UKF : sigma point selection scaling parameter (best to leave this = 0)
no_of_experiments = 1; % Number of times the experiment is
% repeated (for statistical purposes).
% DATA STRUCTURES FOR RESULTS
% ===========================
errorcTrivial = zeros(no_of_experiments1);
errorpTrivial = errorcTrivial;
errorcEKF = errorcTrivial;
errorpEKF = errorcTrivial;
errorcUKF = errorcTrivial;
errorpUKF = errorcTrivial;
errorcPF = errorcTrivial;
errorpPF = errorcTrivial;
errorcPFEKF = errorcTrivial;
errorpPFEKF = errorcTrivial;
errorcPFUKF = errorcTrivial;
errorpPFUKF = errorcTrivial;
% LOAD THE DATA:
% =============
fprintf(‘\n‘)
fprintf(‘Loading the data‘)
fprintf(‘\n‘)
load c2925.prn; load p2925.prn;
load c3025.prn; load p3025.prn;
load c3125.prn; load p3125.prn;
load c3225.p
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 598253 2004-01-27 19:22 upf_demos\The Unscented Particle Filter.pdf
文件 26806 2001-05-24 02:06 upf_demos\upf_demos\blackscholes.m
文件 386 2001-05-24 02:06 upf_demos\upf_demos\bsffun.m
文件 790 2001-05-24 02:06 upf_demos\upf_demos\bshfun.m
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\c2925.prn
文件 3560 2000-08-16 09:12 upf_demos\upf_demos\data\c3025.prn
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\c3125.prn
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\c3225.prn
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\c3325.prn
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\p2925.prn
文件 3448 2000-08-16 09:12 upf_demos\upf_demos\data\p3025.prn
文件 3526 2000-08-16 09:12 upf_demos\upf_demos\data\p3125.prn
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\p3225.prn
文件 5600 2000-08-16 09:12 upf_demos\upf_demos\data\p3325.prn
目录 0 2009-03-30 17:38 upf_demos\upf_demos\data
文件 37799 2001-05-24 02:06 upf_demos\upf_demos\demo_MC.m
文件 373 2001-05-24 02:06 upf_demos\upf_demos\ffun.m
文件 610 2001-05-24 02:06 upf_demos\upf_demos\gengamma.m
文件 319 2001-05-24 02:06 upf_demos\upf_demos\hfun.m
文件 1134 2001-05-24 02:06 upf_demos\upf_demos\multinomialR.m
文件 1401 2001-05-24 02:06 upf_demos\upf_demos\residualR.m
文件 1577 2001-05-24 02:06 upf_demos\upf_demos\systematicR.m
文件 1295 2000-08-15 03:13 upf_demos\upf_demos\ukf\scaledSymmetricSigmaPoints.m
文件 4991 2000-08-18 06:10 upf_demos\upf_demos\ukf\ukf.m
目录 0 2009-03-30 17:38 upf_demos\upf_demos\ukf
文件 516 2001-05-24 02:06 upf_demos\upf_demos\ukf_bsffun.m
文件 521 2001-05-24 02:06 upf_demos\upf_demos\ukf_bshfun.m
文件 366 2001-05-24 02:06 upf_demos\upf_demos\ukf_ffun.m
文件 391 2001-05-24 02:06 upf_demos\upf_demos\ukf_hfun.m
目录 0 2009-03-30 17:38 upf_demos\upf_demos
............此处省略4个文件信息
- 上一篇:matlab遗传算法求最短路径
- 下一篇:GMM-matlab
相关资源
- matlab图论工具箱Graph Theory Toolbox
- Marginalized (Rao-Blackwellized) Particle
- 合成记录Matlab代码
- The DIPUM Toolbox Version 2 m文件
- farthest point sampling
- Mathematica_10.1.0_Keygen
- Particle Filter 粒子滤波 MATLAB程序 Samp
- 粒子滤波算法 matlab
- Small Unmanned Aircraft:Theory and Practice 源
- The MATLAB Genetic Algorithm Toolbox
- PRACHDETECTION
- Gaussian Particle Filter 高斯粒子滤波算法
- 语音信号时频分析 (the basic analysis
- 最新最完整的Matlab粒子滤波工具箱(
- 改进后的离散粒子群算法 (discrete
- Particle Swarm Optimization(PSO) Algorithm
- Synthetic Aperture Radar Signal Processing wit
- 旋转体目标的微多普勒仿真(spining
- Coupling Matrix Synthesis 滤波器耦合矩阵综
- The-Booth-Tolls-for-Thee 元胞自动机源程序
- mathematical_morphology_1d 一维数学形态学
- the-effect-of--EV-on-the-grid 关于电动汽车
- Particle-Swarm-Optimization-MPPT
- Fuzzy-Synthetic-Evaluation-Model 在MATLAB下实
-
Theimagetextureanalyssba
sedonthefractaldime - TheResearchofOff-linehandwrittenChinesecharact
- matlabimagetothefuzzy 本例中主要使用四个
- TheuseandyanjiuofAdaptivefilter 该文档是自适
- MANET
- DS-THEROY 根据D-S理论
评论
共有 条评论