资源简介
matlab程序,基于SVM的数据分类预测——意大利葡萄酒种类识别,里面一个.m文件,一个.mat数据集,直接可以使用。
代码片段和文件信息
%% Matlab神经网络43个案例分析
% 基于SVM的数据分类预测——意大利葡萄酒种类识别
% by 李洋(faruto)
% http://www.matlabsky.com
% Email:faruto@163.com
% http://weibo.com/faruto
% http://blog.sina.com.cn/faruto
% 2013.01.01
%% 清空环境变量
close all;
clear;
clc;
format compact;
%% 数据提取
% 载入测试数据wine其中包含的数据为classnumber = 3wine:178*13的矩阵wine_labes:178*1的列向量
load chapter_WineClass.mat;
% 画出测试数据的box可视化图
figure;
boxplot(wine‘orientation‘‘horizontal‘‘labels‘categories);
title(‘wine数据的box可视化图‘‘FontSize‘12);
xlabel(‘属性值‘‘FontSize‘12);
grid on;
% 画出测试数据的分维可视化图
figure
subplot(351);
hold on
for run = 1:178
plot(runwine_labels(run)‘*‘);
end
xlabel(‘样本‘‘FontSize‘10);
ylabel(‘类别标签‘‘FontSize‘10);
title(‘class‘‘FontSize‘10);
for run = 2:14
subplot(35run);
hold on;
str = [‘attrib ‘num2str(run-1)];
for i = 1:178
plot(iwine(irun-1)‘*‘);
end
xlabel(‘样本‘‘FontSize‘10);
ylabel(‘属性值‘‘FontSize‘10);
title(str‘FontSize‘10);
end
% 选定训练集和测试集
% 将第一类的1-30第二类的60-95第三类的131-153做为训练集
train_wine = [wine(1:30:);wine(60:95:);wine(131:153:)];
% 相应的训练集的标签也要分离出来
train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
% 将第一类的31-59第二类的96-130第三类的154-178做为测试集
test_wine = [wine(31:59:);wine(96:130:);wine(154:178:)];
% 相应的测试集的标签也要分离出来
test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];
%% 数据预处理
% 数据预处理将训练集和测试集归一化到[01]区间
[mtrainntrain] = size(train_wine);
[mtestntest] = size(test_wine);
dataset = [train_wine;test_wine];
% mapminmax为MATLAB自带的归一化函数
[dataset_scaleps] = mapminmax(dataset‘01);
dataset_scale = dataset_scale‘;
train_wine = dataset_scale(1:mtrain:);
test_wine = dataset_scale( (mtrain+1):(mtrain+mtest): );
%% SVM网络训练
tic;
model = svmtrain(train_wine_labels train_wine ‘-c 2 -g 1‘);
toc;
%% SVM网络预测
tic;
[predict_label accuracydec_value1] = svmpredict(test_wine_labels test_wine model);
toc;
%% 结果分析
% 测试集的实际分类和预测分类图
% 通过图可以看出只有一个测试样本是被错分的
figure;
hold on;
plot(test_wine_labels‘o‘);
plot(predict_label‘r*‘);
xlabel(‘测试集样本‘‘FontSize‘12);
ylabel(‘类别标签‘‘FontSize‘12);
legend(‘实际测试集分类‘‘预测测试集分类‘);
title(‘测试集的实际分类和预测分类图‘‘FontSize‘12);
grid on;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2458 2014-08-20 12:53 chapter_WineClass.m
文件 20168 2010-01-30 18:38 chapter_WineClass.mat
- 上一篇:混沌系统画分岔图
- 下一篇:噪声音乐信号的巴特沃斯带通滤波器以及均值去噪方法
相关资源
- SVM的回归预测分析——上证指数开盘
- 印章识别matlab代码
- ibsvm-3.21
- 果蝇参数寻优FOA-LSSVM的完整程序
- 利用WOA算法优化libsvm中SVDD算法的参数
- svm支持向量机与nbc朴素贝叶斯算法比
- SVM的matlab代码
- 混凝土抗压强度预测_SVM_Matlab_归一_
- 基于SVM的回归预测分析
- libsvm数据格式转换程序
- 基于SVM的matlab车牌识别
- hog+svm图像二分类
- 基于PCA和SVM的人脸识别.zip
- 《MATLAB 神经网络30个案例分析》所有
- SVM分类与回归的matlab代码
- 基于LABVIEW和MATLAB混合编程障碍物识别
- svm 支持向量机 回归 预测
- libsvm - 支持多类别分类的svm工具箱m
- 经典SVM算法的MATLAB程序
- 蚁群优化SVM系数
- SVM-KM Matlab源程序
- 模式识别课程作业 基于svm的人脸识别
- MATLAB的SVM安装包drtoolbox_libsvm-3.17
- SVM算法对MNIST数据集分类
- 遗传算法优化支持向量机GASVM
- 经典SVM算法matlab程序
- SVM分类器.zip
- matlab流形学习算法工具包&matlab机器学
- 模式识别课程作业 matlab与libsvm环境
- libsvm工具包-Matlab
评论
共有 条评论