资源简介
基于sift和SVM算法实现的手势识别程序,用MATLAB GUI编写的,附有手势库,可拷贝至任何磁盘运行不必担心路径问题,但可能要求版本高一点的MATLAB软件
代码片段和文件信息
%A - 1329
%B - 487
%C - 572
%Five - 654
%Point - 1395
%V - 435
%%
imgDir = ‘./shp_marcel_train/Marcel-Train/‘;
outDir = ‘./surfTrain‘;
mkdir(outDir);
% trainNumA = 1329;
% trainNumB = 487;
% trainNumC = 572;
% trainNumFive = 654;
% trainNumPoint = 1395;
% trainNumV = 435;
trainNumA = 10;
trainNumB = 10;
trainNumC = 10;
% trainNumFive = 200;
% trainNumPoint = 600;
% trainNumV = 200;
imgSize = 80;
patchSize = 16;
gridSpacing = patchSize/2;
gridRowNum = imgSize/gridSpacing - 1;
row_matOne = gridRowNum^2;
%% A
matDSift = [];
matOne = zeros(row_matOne 128);
trainLabel = ‘A‘;
for i = 1:trainNumA
% num = [num2str(floor(i/1000)) num2str(floor(mod(i1000)/100)) num2str(floor(mod(i100)/10)) num2str(floor(mod(i 10)))];
num = [num2str(floor(mod(i100)/10)) num2str(floor(mod(i 10)))];
imgName = [trainLabel ‘-uniform‘ num ‘.ppm‘];
imgPath = [imgDir trainLabel ‘/‘ imgName];
img = imread(imgPath);
img = imresize(img [imgSize imgSize]);
descriptor = dense_sift(img patchSize gridSpacing);
for j = 1:gridRowNum
for k = 1:gridRowNum
matOne((j-1)*gridRowNum + k :) = descriptor(j k :);
end
end
matDSift = cat(1 matDSift matOne);
end
matOutFileName = [outDir ‘/‘ ‘dsift‘ trainLabel ‘.txt‘];
dlmwrite(matOutFileName matDSift);
%% B
matDSift = [];
matOne = zeros(row_matOne 128);
trainLabel = ‘B‘;
for i = 1:trainNumB
% num = [num2str(floor(i/100)) num2str(floor(mod(i100)/10)) num2str(floor(mod(i 10)))];
num = [num2str(floor(mod(i100)/10)) num2str(floor(mod(i 10)))];
imgName = [trainLabel ‘-uniform‘ num ‘.ppm‘];
imgPath = [imgDir trainLabel ‘/‘ imgName];
img = imread(imgPath);
img = imresize(img [imgSize imgSize]);
descriptor = dense_sift(img patchSize gridSpacing);
for j = 1:gridRowNum
for k = 1:gridRowNum
matOne((j-1)*gridRowNum + k :) = descriptor(j k :);
end
end
matDSift = cat(1 matDSift matOne);
end
matOutFileName = [outDir ‘/‘ ‘dsift‘ trainLabel ‘.txt‘];
dlmwrite(matOutFileName matDSift);
%% C
matDSift = [];
matOne = zeros(row_matOne 128);
trainLabel = ‘C‘;
for i = 1:trainNumC
% num = [num2str(floor(i/100)) num2str(floor(mod(i100)/10)) num2str(floor(mod(i 10)))];
num = [num2str(floor(mod(i100)/10)) num2str(floor(mod(i 10)))];
imgName = [trainLabel ‘-uniform‘ num ‘.ppm‘];
imgPath = [imgDir trainLabel ‘/‘ imgName];
img = imread(imgPath);
img = imresize(img [imgSize imgSize]);
descriptor = dense_sift(img patchSize gridSpacing);
for j = 1:gridRowNum
for k = 1:gridRowNum
matOne((j-1)*gridRowNum + k :) = descriptor(j k :);
end
end
matDSift = cat(1 matDSift matOne);
end
matOutFileName = [outDir ‘/‘ ‘dsift‘ trainLabel ‘.txt‘];
dlmwrite(matOutFileName matDSift);
%
% matDSift = [];
% matOne = zeros(row_matOne 128);
% trainLabel = ‘Five‘;
%
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 786448 2015-10-12 23:42 Hand gesture Recognition ba
文件 2359312 2015-10-12 23:18 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 786448 2015-10-12 23:43 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:54 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:47 Hand gesture Recognition ba
文件 2359312 2015-10-12 22:44 Hand gesture Recognition ba
文件 5189 2015-10-13 00:21 Hand gesture Recognition ba
文件 3180 2015-10-03 20:44 Hand gesture Recognition ba
文件 264 2008-02-21 18:08 Hand gesture Recognition ba
文件 449 2008-02-21 18:08 Hand gesture Recognition ba
文件 2436 2015-10-13 01:29 Hand gesture Recognition ba
文件 331 2015-10-07 16:33 Hand gesture Recognition ba
............此处省略297个文件信息
相关资源
- PSO优化SVM参数matlab
- SVM+HOG行人识别算法的matlab实现
- 基于PCA与KPCA的SVM人脸识别程序含数据
- MINIST+SVM+MATLAB手写体识别
- 基于PCA与SVM的人脸识别matlab代码
- 高光谱图像分类--SVM
- 静态手势识别系统MATLAB和DSP代码
- 蜂群SVMABC-SVM遗传算法SVMGA-SVM粒子群
- SVM的数据分类预测——意大利葡萄酒
- matlab libsvm安装步骤
- SVM分类与回归的
- SVM参数优化程序MATLAB
- svm神经网络的回归预测分析
- SVM神经网络的信息粒化时序回归预测
- 基于SVM的数据分类预测——意大利葡
- SVM神经网络的数据分类预测-matlab
- 遗传算法实现对SVM的参数进行优化
- matlab SVM的参数优化——如何更好的提
- svm多分类matlab程序
- SVM分类器的相关算法和matlab源码
- SVM支持向量机分类
- matlab开发-使用svmrfe选择功能
- 基于SIFT的超分辨率图像配准及MATLAB实
- sift图片拼接matlab
- SIFT算法的matlab实现
- SVM MATLAB toolbox
- SIFT特征提取
- LSSVM程序代码
- Matlab实现遥感影像分类所需库svm、l
- FAST检测角点+SIFT特征描述符描述角点
评论
共有 条评论