资源简介
基于姿势的行为识别matlab程序,使用pose提取关节特征进行行为识别,matlab版本要2014年的,16年的估计也行
代码片段和文件信息
% % Copyright (C) 2014 LEAR Inria Grenoble France
%
% Permission is hereby granted free of charge to any person obtaining
% a copy of this software and associated documentation files (the
% “Software“) to deal in the Software without restriction including
% without limitation the rights to use copy modify merge publish
% distribute sublicense and/or sell copies of the Software and to
% permit persons to whom the Software is furnished to do so subject to
% the following conditions:
%
% The above copyright notice and this permission notice shall be
% included in all copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED “AS IS“ WITHOUT WARRANTY OF ANY KIND
% EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
% MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND
% NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
% LIABLE FOR ANY CLAIM DAMAGES OR OTHER LIABILITY WHETHER IN AN ACTION
% OF CONTRACT TORT OR OTHERWISE ARISING FROM OUT OF OR IN CONNECTION
% WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%%
% If you use this code please cite:
% @INPROCEEDINGS{cherian14
% author={Cherian A. and Mairal J. and Alahari K. and Schmid C.}
% booktitle={IEEE Conference on Computer Vision and Pattern Recognition}
% title={Mixing Body-Part Sequences for Human Pose Estimation}
% year={2014}
% }
%
% demo code main file to run.
% for bugs contact anoop.cherian@inria.fr
%
warning ‘off‘;
startup(); % set some paths
% configure. See the function for details. You need to set the cache and
% the sequence paths in the config.
config = set_algo_parameters();
% load the bodypart model learned using Yang and Ramanan framework.
load ./data/FLIC_model.mat;% the 13part FLIC human pose model.
% get the dataset and gt annotations
piw_data = get_piw_data(‘piw‘ config.data_path);
% process each sequence here we show only for seq15 available in the
% dataset folder.
detected_pose_type = struct(‘seq‘ {} ‘filename‘ {} ‘frame‘ {} ‘bestpose‘{});
detected_pose_seqs = repmat(detected_pose_type [111]);
seqs = dir(config.data_path); seqs = seqs(3:end);
all_detections = []; gt_all = []; mov = 1;
% for every sequence in the selected_seqs folder (with the dataset)
for s=1:length(seqs)
fprintf(‘working on sequence %s\n‘ seqs(s).name);
% read the frames and store the respective groundtruth annotations.
seq_dir = [config.data_path seqs(s).name ‘/‘];
frames = dir([seq_dir ‘/*.png‘]);
gt = get_groundtruth_for_seq(frames piw_data);% extract gt annotations for the frames in seq
gt_all = [gt_all gt]; % used for full evaluation.
% now we are ready to compute the part sequences and recombination!
try
load([config.data_store_path ‘detected_poses_‘ seqs(s).name] ‘detected_poses‘);
catch
detected_poses = EstimatePosesInVideo(seq_dir model 1 config);
save([config.data
- 上一篇:直线匹配程序MATLAB
- 下一篇:精通MATLAB图像处理源代码 张强 王正林编著
相关资源
- 精通MATLAB图像处理源代码 张强 王正
- 直线匹配程序MATLAB
- 基于MATLAB的微表情识别系统
- 数字滤波器的MATLAB与FPGA实现第二版—
- 数学建模代码供同学使用
- MATLAB+GUI设计学习手记PDF及源代码
- 基于MBD的六自由度协作机器人设计与
- 数字图像处理及MATLAB实现第2版[杨杰
- 光场深度估计MATLAB源代码
- 数字语音处理及MATLAB仿真(第2版)源
- [控制系统计算机辅助设计:MATLAB语言
- 机器人控制系统设计与matlab仿真程序
- 机器人控制系统的设计与MATLAB仿真第
- 精通MATLAB7编程与数据库应用_部分1
- 二阶锁相环Matlab程序及其FPGA程序
- 机器人控制系统的设计与MATLAB仿真
- 《模式识别与智能计算:MATLAB技术实
- 音频检索的matlab代码
- 通信原理MATLAB仿真教程
- 智能预测控制及其MATLAB实现_
- 高等光学仿真MATLAB版_完整版.pdf
- MATLAB遗传算法工具箱及应用 包含PDF电
- 卡尔曼滤波原理及matlab仿真含程序
- matlab机器人工具箱10.3.1
- MATLAB GUI设计学习手记第二版源程序
- MATLAB数字信号处理与应用 张德丰 清华
- 数字图像处理MATLAB版(中文版)
- 两个经典的多目标优化算法代码:N
-
Simuli
nk/ RTW工具箱 - 机器学习与MATLAB代码
评论
共有 条评论