资源简介
实现和比较了卡尔曼和维纳滤波器的去噪性能,MATLAB代码可运行

代码片段和文件信息
% function exampleFilter
%
% Example of how the Kalman filter performs for real data
obj=VideoReader(‘julius.avi‘);
aviobj=VideoWriter(‘outputvideo.avi‘)
open(aviobj)
nframes=obj.NumberOfframes;
for k=1:nframes
img=read(objk);
im2 = imnoise(img‘gaussian‘0.10.2)
f=im2frame(im2)
writeVideo(aviobjf)
end
close(aviobj)
%--------------------------------------------------------------------------
%---------------------End of Gaussian noise adding-------------------------
%--------------------------------------------------------------------------
%implay(‘outputvideo.avi‘);
filename = ‘outputvideo.avi‘;
mov = VideoReader(filename);
% Output folder
%getting no of frames
videoframes=[];
newframes=[];
realframe=[];
wienerframe=[];
psnrk=[];
filteredframe=[];
filteredframe1=[];
numberOfframes = mov.NumberOfframes;
numberOfframesWritten = 0;
for frame = 1 :numberOfframes
thisframe = read(mov frame);
% outputbaseFileName = sprintf(‘%3.3d.bmp‘ frame);
%outputFullFileName = fullfile(outputFolder outputbaseFileName);
%imwrite(thisframe outputFullFileName ‘bmp‘);
%progressIndication = sprintf(‘Wrote frame %4d of %d.‘ framenumberOfframes);
videoframes = cat(3videoframesthisframe);
%disp(progressIndication);
%numberOfframesWritten = numberOfframesWritten + 1;
end
for frame=1:size(videoframes3)
x=videoframes(::frame);
y=im2single(x);
newframes = cat(3newframesy);
end
%Apply filter
k=Kalman_Stack_Filter(newframes);
k75=Kalman_Stack_Filter(newframes0.75);
outputFolder= fullfile(cd ‘filteredframe‘);
if ~exist(outputFolder ‘dir‘)
mkdir(outputFolder);
end
y=size(k3);
disp(y);
for frame=1:y
thisframe=k(::frame);
thisframe1=k75(::frame);
y=im2single(thisframe);
y1=im2single(thisframe1);
filteredframe = cat(3filteredframey);
filteredframe1=cat(3filteredframe1y1);
%outputbaseFileName1 = sprintf(‘%3.3d.bmp‘ frame);
%disp(x);
%disp(outputbaseFileName1);
%outputFullFileName1 = fullfile(outputFolder outputbaseFileName1);
%disp(outputFullFileName1);
%disp(y);
%imwrite(thisframe outputFullFileName1 ‘bmp‘);
end
%--------------------------------------------------------------------------
%---------------------Wiener Filering--------------------------------------
%--------------------------------------------------------------------------
%implay(videoframes);
outputFolder3 = fullfile(cd ‘wienerframes‘);
if ~exist(outputFolder3 ‘dir‘)
mkdir(outputFolder3);
end
disp(outputFolder3);
for frame=1:size(newframes3)
I=videoframes(::frame);
I=im2single(I);
%x=frame+5;
%outputbaseFileName1 = sprintf(‘%3.3d.bmp‘x);
%outputFullFileName1 = fullfile(outputFolder3 outputbaseFileName1);
%disp(outputFullFileName1);
J=wiener2(I[5 5]);
wienerframe=cat(3wienerframeJ);
end
%--------------------------------------------------------------------------
%---------------------End of Wiener Filering---------------------
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\
文件 613275 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\FinalYearProjectPaper-2.docx
文件 1088 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\Kalman_Stack_Filter.m
文件 742 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\README.md
文件 6065 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\exampleFilter.m
文件 4035 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\gaussiannoise.m
文件 820224 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\julius.avi
文件 370 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\psnrcalculationnew.m
文件 532 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\terminal.m
文件 249 2016-09-12 16:53 Comparing-and-combining-Kalman-and-Wiener-Filter-for-video-denoising-master\wienerfilter.m
相关资源
- 高灵敏度GPS接收机MATLAB仿真,附捕获
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
- k近邻算法matlab实现
- matlab识别系统
评论
共有 条评论