资源简介
ksvd字典学习算法和改进的ksvd字典学习算法,并自动计算psnr。
代码片段和文件信息
% KSVD running file
% in this file a synthetic test of the K-SVD algorithm is performed. First
% a random dictionary with normalized columns is being generated and then
% a set of data signals each as a linear combination of 3 dictionary
% element is created with noise level of 20SNR. this set is given as input
% to the K-SVD algorithm.
% a different mode for activating the K-SVD algorithm is until a fixed
% error is reached in the Sparse coding stage instead until a fixed number of coefficients is found
% (it was used by us for the
% denoising experiments). in order to switch between those two modes just
% change the param.errorFlag (0 - for fixed number of coefficients 1 -
% until a certain error is reached).
param.L = 3; % number of elements in each linear combination.
param.K = 50; % number of dictionary elements
param.numIteration = 50; % number of iteration to execute the K-SVD algorithm.
param.errorFlag = 0; % decompose signals until a certain error is reached. do not use fix number of coefficients.
%param.errorGoal = sigma;
param.preserveDCAtom = 0;
%%%%%%% creating the data to train on %%%%%%%%
N = 1500; % number of signals to generate
n = 20; % dimension of each data
SNRdB = 20; % level of noise to be added
[param.TrueDictionary D x] = gererateSyntheticDictionaryAndData(N param.L n param.K SNRdB);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% initial dictionary: Dictionary elements %%%%%%%%
param.InitializationMethod = ‘DataElements‘;
param.displayProgress = 1;
disp(‘Starting to train the dictionary‘);
[Dictionaryoutput] = KSVD(Dparam);
disp([‘The KSVD algorithm retrived ‘num2str(output.ratio(end))‘ atoms from the original dictionary‘]);
[Dictionaryoutput] = MOD(Dparam);
disp([‘The MOD algorithm retrived ‘num2str(output.ratio(end))‘ atoms from the original dictionary‘]);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 11321 2014-12-03 17:49 ksvd\curvelet1.jpg
文件 1915 2013-12-05 16:01 ksvd\demo1.asv
文件 1907 2009-09-03 10:54 ksvd\demo1.m
文件 3859 2014-12-04 10:04 ksvd\demo2.asv
文件 3998 2014-12-04 16:21 ksvd\demo2.m
文件 8516 2013-11-06 19:55 ksvd\demo3.asv
文件 8504 2006-12-28 13:57 ksvd\demo3.m
文件 5426 2007-01-24 07:53 ksvd\denoiseImageDCT.m
文件 6046 2006-12-12 09:18 ksvd\denoiseImageGlobal.m
文件 9088 2007-01-24 07:53 ksvd\denoiseImageKSVD.m
文件 3246 2007-01-25 08:39 ksvd\displayDictionaryElementsAsImage.asv
文件 3224 2007-01-25 08:39 ksvd\displayDictionaryElementsAsImage.m
文件 15443 2012-03-13 03:21 ksvd\fdct_wrapping.m
文件 1304 2012-03-13 03:21 ksvd\fdct_wrapping_demo_basic.m
文件 2840 2012-03-13 03:21 ksvd\fdct_wrapping_demo_denoise.m
文件 8676 2014-04-18 16:21 ksvd\fdct_wrapping_demo_denoise_enhanced.asv
文件 8888 2014-04-18 16:32 ksvd\fdct_wrapping_demo_denoise_enhanced.m
文件 1521 2012-03-13 03:21 ksvd\fdct_wrapping_demo_disp.m
文件 1338 2012-03-13 03:21 ksvd\fdct_wrapping_demo_recon.m
文件 2063 2012-03-13 03:21 ksvd\fdct_wrapping_demo_wave.m
文件 1919 2012-03-13 03:21 ksvd\fdct_wrapping_dispcoef.m
文件 8647 2012-03-13 03:21 ksvd\fdct_wrapping_param.m
文件 8647 2012-03-13 03:21 ksvd\fdct_wrapping_param.m~
文件 785 2012-03-13 03:21 ksvd\fdct_wrapping_pos2idx.m
文件 751 2012-03-13 03:21 ksvd\fdct_wrapping_window.m
文件 1896 2006-12-11 14:25 ksvd\gererateSyntheticDictionaryAndData.m
文件 5749450 2005-09-21 08:35 ksvd\globalTrainedDictionary.mat
文件 34985 2005-09-11 15:44 ksvd\house.jpg
文件 6306 2014-12-04 11:14 ksvd\house1.jpg
文件 16277 2012-03-13 03:21 ksvd\ifdct_wrapping.m
文件 66614 2014-12-03 17:32 ksvd\kcfusion.jpg
............此处省略27个文件信息
- 上一篇:FTF
- 下一篇:matlab计算传感器配置
相关资源
- ksvd算法matlab稀疏表示中训练字典
- 骑士cms_2.0数据库字典
- 新华字典(完整版).mdb
- 康熙字典数据库
- 新华字典 access 2014版 做字典 数据库
- 新华字典数据库文件
- 新华字典数据库.mdb
- 明小子(超大字典)多后台 多字段
- matlab实现LZW码
- 多光谱图像评价指标含psnrrmse ergas s
- 基于字典学习的语音增强中字典更新
- KSVD(稀疏表示中字典学习的算法)重
- super-resolutioncode 基于学习的超分辨率
- OMP OMP算法:匹配追踪算法
- k_svd k-svd算法m代码.用于形成冗余字典
- KSVD-for-SAR_LOG 用基于稀疏表示和KSVD字
- KSVD KSVD算法程序
- ksvdsbox11-min KSVD字典训练程序
- Sparse-Coding-and-Dictionary 对图像稀疏编码
- KSVD 稀疏表示中字典学习算法KSVD的实
- LKDL_Package 该程序包是新的算法(LKD
- KSVD_Matlab_ToolBox 数字图像处理
- Compression-sensing 压缩传感理论
-
me
taface_ICIP 利用稀疏表示一集字典学 - K-SVD 详细介绍了K-SVD字典训练的详细过
- BPDN 基于字典学习的匹配追踪算法
- 自己写的字典学习代码
- 英语词根词缀.mdx
评论
共有 条评论