资源简介
支持向量机SVM(Support Vector Machine)作为一种可训练的机器学习方法,依靠小样本学习后的模型参数进行导航星提取,可以得到分布均匀且恒星数量大为减少的导航星表。 基本情况 Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的理论背景。 支持向量机方法是在近年来提出的一种新方法。
代码片段和文件信息
function varargout = SVC(varargin)
% SVC M-file for SVC.fig
% SVC by itself creates a new SVC or raises the existing
% singleton*.
%
% H = SVC returns the handle to a new SVC or the handle to
% the existing singleton*.
%
% SVC(‘CALLBACK‘hobjecteventDatahandles...) calls the local
% function named CALLBACK in SVC.M with the given input arguments.
%
% SVC(‘Property‘‘Value‘...) creates a new SVC or raises the
% existing singleton*. Starting from the left property value pairs are
% applied to the GUI before SVC_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to SVC_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE‘s Tools menu. Choose “GUI allows only one
% instance to run (singleton)“.
%
% See also: GUIDE GUIDATA GUIHANDLES
% Edit the above text to modify the response to help SVC
% Last Modified by GUIDE v2.5 27-Jan-2010 21:44:15
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name‘ mfilename ...
‘gui_Singleton‘ gui_Singleton ...
‘gui_OpeningFcn‘ @SVC_OpeningFcn ...
‘gui_OutputFcn‘ @SVC_OutputFcn ...
‘gui_LayoutFcn‘ [] ...
‘gui_Callback‘ []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State varargin{:});
else
gui_mainfcn(gui_State varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before SVC is made visible.
function SVC_OpeningFcn(hobject eventdata handles varargin)
% This function has no output args see OutputFcn.
% hobject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to SVC (see VARARGIN)
% Choose default command line output for SVC
handles.output = hobject;
% Update handles structure
guidata(hobject handles);
% UIWAIT makes SVC wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = SVC_OutputFcn(hobject eventdata handles)
% varargout cell array for returning output args (see VARARGOUT);
% hobject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% javaframe = get(gcf‘Javaframe‘);
% set(javaframe‘Maximized‘1);
% --- Executes on button press in load.
function load_Callback(hobject eventdata handles)
% hobject handle to load (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filenamepathnamefilterindex] = uigetfile({‘*.mat‘;‘*.
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 1142 2011-07-18 09:23 SVM_GUI_3.1[mcode]{by faruto}\readme.txt
文件 20001 2011-07-18 09:20 SVM_GUI_3.1[mcode]{by faruto}\SVC.fig
文件 52376 2011-07-18 09:19 SVM_GUI_3.1[mcode]{by faruto}\SVC.m
文件 2753 2011-07-18 09:20 SVM_GUI_3.1[mcode]{by faruto}\SVM_GUI.fig
文件 3675 2010-01-26 21:14 SVM_GUI_3.1[mcode]{by faruto}\SVM_GUI.m
文件 23716 2011-07-18 09:19 SVM_GUI_3.1[mcode]{by faruto}\SVR.fig
文件 64762 2011-07-18 09:18 SVM_GUI_3.1[mcode]{by faruto}\SVR.m
文件 911 2010-01-25 10:07 SVM_GUI_3.1[mcode]{by faruto}\testdata\fisheriris_test.mat
文件 568 2010-02-02 15:06 SVM_GUI_3.1[mcode]{by faruto}\testdata\regress_test.mat
文件 6089 2010-01-26 13:01 SVM_GUI_3.1[mcode]{by faruto}\testdata\wine_test.mat
目录 0 2010-02-02 20:57 SVM_GUI_3.1[mcode]{by faruto}\testdata
目录 0 2013-07-30 17:47 SVM_GUI_3.1[mcode]{by faruto}
----------- --------- ---------- ----- ----
175993 12
相关资源
- 基于半监督的svm的图像分类
- SAO星表数据
- SVM的手写数字识别(Handwriting recogni
- PSO SVM SVM用于分类时的参数优化
- 很好的matlab libsvm应用案例( heart_sc
- HoG SVm 人脸识别方
- SVM light 工具箱 包含和说明文件 包含
- SVM之MATLAB的简单实现
- 基于HOG+SVM的行人检测系统
- pso_svm.m-matlab程序。
- SVM参数寻优及交叉验证matlab
- 支持向量机进行预测SVMMatlab版
- 基于Matlab植物虫害检测GUI,注释,s
- Matlab PCA+SVM人脸识别包含GUI界面设计
- 支持向量机进行预测(SVM)Matlab版.
- matlab中LS_SVMlab工具箱
- 支撑向量机SVM和支撑向量回归SVR的参
- SVM的Matlab工具箱,具有详细工具箱安
- lssvm(最小二乘支持向量机)matlab
- matlab实现HOG+LBP+HIKSVM行人检测算法
- RBF and svm matlab code matlab回归预测的源
- 基于svm dtc 的船舶电力推进系统仿真模
- PCA SVM 程序
- libsvm SVM分类器
- PSO SampEn ApproxiEN RVM PSO:粒子群优化算
- matlab的libsvm3.18工具箱
- 基于pso的matlab svm参数优化寻优
- libsvm-mat-2.89-3[FarutoUltimate3.0] SVM分类、
- matlab实现的SVM多分类
- SFLA-LSSVM 混洗蛙跳算法优化最小二乘支
评论
共有 条评论