资源简介
voice recognition using mfcc
代码片段和文件信息
function errstring = consist(model type inputs outputs)
%CONSIST Check that arguments are consistent.
%
% Description
%
% ERRSTRING = CONSIST(NET TYPE INPUTS) takes a network data structure
% NET together with a string TYPE containing the correct network type
% a matrix INPUTS of input vectors and checks that the data structure
% is consistent with the other arguments. An empty string is returned
% if there is no error otherwise the string contains the relevant
% error message. If the TYPE string is empty then any type of network
% is allowed.
%
% ERRSTRING = CONSIST(NET TYPE) takes a network data structure NET
% together with a string TYPE containing the correct network type and
% checks that the two types match.
%
% ERRSTRING = CONSIST(NET TYPE INPUTS OUTPUTS) also checks that the
% network has the correct number of outputs and that the number of
% patterns in the INPUTS and OUTPUTS is the same. The fields in NET
% that are used are
% type
% nin
% nout
%
errstring = ‘‘;
% If type string is not empty
if ~isempty(type)
% First check that model has type field
if ~isfield(model ‘type‘)
errstring = ‘Data structure does not contain type field‘;
return
end
% Check that model has the correct type
s = model.type;
if ~strcmp(s type)
errstring = [‘Model type ‘‘‘ s ‘‘‘ does not match expected type ‘‘‘...
type ‘‘‘‘];
return
end
end
% If inputs are present check that they have correct dimension
if nargin > 2
if ~isfield(model ‘nin‘)
errstring = ‘Data structure does not contain nin field‘;
return
end
data_nin = size(inputs 2);
if model.nin ~= data_nin
errstring = [‘Dimension of inputs ‘ num2str(data_nin) ...
‘ does not match number of model inputs ‘ num2str(model.nin)];
return
end
end
% If outputs are present check that they have correct dimension
if nargin > 3
if ~isfield(model ‘nout‘)
errstring = ‘Data structure does not conatin nout field‘;
return
end
data_nout = size(outputs 2);
if model.nout ~= data_nout
errstring = [‘Dimension of outputs ‘ num2str(data_nout) ...
‘ does not match number of model outputs ‘ num2str(model.nout)];
return
end
% Also check that number of data points in inputs and outputs is the same
num_in = size(inputs 1);
num_out = size(outputs 1);
if num_in ~= num_out
errstring = [‘Number of input patterns ‘ num2str(num_in) ...
‘ does not match number of output patterns ‘ num2str(num_out)];
return
end
end
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 319 2002-01-07 23:34 svm\code14-11
文件 2508 2012-11-15 11:27 svm\consist.m
文件 1253 2012-11-15 12:06 svm\demecoc1.m
文件 88496 2002-01-07 22:12 svm\demecoc1.mat
文件 7624 2012-11-15 12:06 svm\demsvm1.m
文件 10614 2012-11-15 12:07 svm\demsvm2.m
文件 1104 2012-11-15 11:47 svm\demsvm3.m
文件 315933 2001-12-19 15:42 svm\ecoc-codes.tar.gz
文件 1312 2012-11-15 12:07 svm\ecoc.m
文件 1708 2012-11-15 12:08 svm\ecocfwd.m
文件 2955 2012-11-15 11:22 svm\ecocload.m
文件 2405 2012-11-15 12:09 svm\ecoctrain.m
文件 161 2012-11-15 12:04 svm\Readme.txt
文件 4565 2012-11-15 11:23 svm\svm.m
文件 8422 2012-11-15 11:23 svm\svmcv.m
文件 2127 2012-11-15 12:10 svm\svmfwd.m
文件 2568 2012-11-15 11:24 svm\svmkernel.m
文件 3942 2012-11-15 12:09 svm\svmstat.m
文件 19900 2012-11-15 12:10 svm\svmtrain.m
目录 0 2012-11-15 12:08 svm
----------- --------- ---------- ----- ----
477916 20
相关资源
- svmplot 支持向量机的画图程序。能很好
- traffic_warning_zip
- face recognition 稀疏表示人脸分类与识别
- svm分类器的汉语声调识别
- SVM function available 可实现SVM函数曲线拟
- HOG 根据Dalal提出的HOG特征算法编写
- CROlib.mat 1.0.2
- 支持向量机SVM机器学习方法
- 基于半监督的svm的图像分类
- SVM的手写数字识别(Handwriting recogni
- PSO SVM SVM用于分类时的参数优化
- 很好的matlab libsvm应用案例( heart_sc
- HoG SVm 人脸识别方
- SVM light 工具箱 包含和说明文件 包含
- SVM之MATLAB的简单实现
- 基于HOG+SVM的行人检测系统
- pso_svm.m-matlab程序。
- 说话人识别完整源码matlab实现
- SVM参数寻优及交叉验证matlab
- 支持向量机进行预测SVMMatlab版
- 基于Matlab植物虫害检测GUI,注释,s
- Matlab PCA+SVM人脸识别包含GUI界面设计
- 支持向量机进行预测(SVM)Matlab版.
- matlab中LS_SVMlab工具箱
- 支撑向量机SVM和支撑向量回归SVR的参
- SVM的Matlab工具箱,具有详细工具箱安
- lssvm(最小二乘支持向量机)matlab
- matlab实现HOG+LBP+HIKSVM行人检测算法
- RBF and svm matlab code matlab回归预测的源
- 基于svm dtc 的船舶电力推进系统仿真模
评论
共有 条评论