资源简介
基于KERAS实现的LSTM网络,有run.py, model.py , 数据处理模块和参数文件。用KERAS搭建的网络。很好理解。

代码片段和文件信息
__author__ = “Jakob Aungiers“
__copyright__ = “Jakob Aungiers 2018“
__version__ = “2.0.0“
__license__ = “MIT“
import os
import json
import time
import math
import matplotlib.pyplot as plt
from core.data_processor import DataLoader
from core.model import Model
def plot_results(predicted_data true_data):
fig = plt.figure(facecolor=‘white‘)
ax = fig.add_subplot(111)
ax.plot(true_data label=‘True Data‘)
plt.plot(predicted_data label=‘Prediction‘)
plt.legend()
plt.show()
def plot_results_multiple(predicted_data true_data prediction_len):
fig = plt.figure(facecolor=‘white‘)
ax = fig.add_subplot(111)
ax.plot(true_data label=‘True Data‘)
# Pad the list of predictions to shift it in the graph to it‘s correct start
for i data in enumerate(predicted_data):
padding = [None for p in range(i * prediction_len)]
plt.plot(padding + data label=‘Prediction‘)
plt.legend()
plt.show()
def main():
configs = json.load(open(‘config.json‘ ‘r‘))
if not os.path.exists(configs[‘model‘][‘save_dir‘]): os.makedirs(configs[‘model‘][‘save_dir‘])
data = DataLoader(
os.path.join(‘data‘ configs[‘data‘][‘filename‘])
configs[‘data‘][‘train_test_split‘]
configs[‘data‘][‘columns‘]
)
model = Model()
model.build_model(configs)
x y = data.get_train_data(
seq_len=configs[‘data‘][‘sequence_length‘]
normalise=configs[‘data‘][‘normalise‘]
)
‘‘‘
# in-memory training
model.train(
x
y
epochs = configs[‘training‘][‘epochs‘]
batch_size = configs[‘training‘][‘batch_size‘]
save_dir = configs[‘model‘][‘save_dir‘]
)
‘‘‘
# out-of memory generative training
steps_per_epoch = math.ceil((data.len_train - configs[‘data‘][‘sequence_length‘]) / configs[‘training‘][‘batch_size‘])
model.train_generator(
data_gen=data.generate_train_batch(
seq_len=configs[‘data‘][‘sequence_length‘]
batch_size=configs[‘training‘][‘batch_size‘]
normalise=configs[‘data‘][‘normalise‘]
)
epochs=configs[‘training‘][‘epochs‘]
batch_size=configs[‘training‘][‘batch_size‘]
steps_per_epoch=steps_per_epoch
save_dir=configs[‘model‘][‘save_dir‘]
)
x_test y_test = data.get_test_data(
seq_len=configs[‘data‘][‘sequence_length‘]
normalise=configs[‘data‘][‘normalise‘]
)
predictions = model.predict_sequences_multiple(x_test configs[‘data‘][‘sequence_length‘] configs[‘data‘][‘sequence_length‘])
# predictions = model.predict_sequence_full(x_test configs[‘data‘][‘sequence_length‘])
# predictions = model.predict_point_by_point(x_test)
plot_results_multiple(predictions y_test configs[‘data‘][‘sequence_length‘])
# plot_results(predictions y_test)
if __name__ == ‘__main__‘:
main()
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\
文件 12 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\.gitignore
文件 1084 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\README.md
文件 765 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\config.json
目录 0 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\core\
文件 362 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\core\__init__.py
文件 3562 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\core\data_processor.py
文件 4274 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\core\model.py
文件 237 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\core\utils.py
目录 0 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\data\
文件 61721 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\data\sinewave.csv
文件 310533 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\data\sp500.csv
文件 82 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\requirements.txt
文件 2870 2018-10-15 20:50 LSTM-Neural-Network-for-Time-Series-Prediction-master\run.py
相关资源
- SVR算法程序可运行
- 计算机图形学 边填充算法实现代码
- 福建师范大学历年算法考卷
- 栈的实现及应用,六种基本算法
- Bresenham算法绘制线段并利用“橡皮筋
- 介绍几种压缩算法及《笨笨数据压缩
- 改进的BP神经网络算法
- A星算法_原理讲解_例子
- 云模型的相关算法cloud
- 旋转矩阵求欧拉角的简单算法
- 栅栏填充算法源码(VC)
- RSA算法源码
- 关联分析Apriori算法实现
- [免费]relax算法成像
- 操作系统 LRU算法 实验报告 及 程序代
- 分治法快速排序算法QuickSort C
- 现代谱估计算法 music ESPRIT 谐波分解
- MUSIC算法c 实现
- 007出纳管理系统 v7[1].5.94 算法注册机
- 克鲁斯卡尔算法C和C 实现代码
- capon波束形成算法-VC实现
- QGA 量子遗传算法
- 利用OpenGL写毛笔字算法
- 带头结点的单链表的c算法实现
- 自适应隐写算法wow
- 协同过滤算法源码
- RSA AES DES ECC加密算法源码
- 密码学课程设计:DES加密解密算法的
- 北航人工智能原理课大作业源代码,
- A*算法的2D演示(带源码)
评论
共有 条评论