资源简介
这是最新的emd去噪的程序,并且有和小波去噪的比较。
采用的是符合emd分解特性的阈值去噪方法。
代码片段和文件信息
function EMDdenoised=EMDdenoise(signalmethoditerationsaltermethodnofsiftsthrestypeT_multM1IM2)
%EMDdenoised : denoised signal
%signal : Noisy signal
%method : EMDdenoising method
% ‘IT‘ for Interval Thresholding (see [1])
% ‘IIT‘ for Iterative Interval Thresholding (see [1])
% ‘CIIT‘ for Clear first Iterative Interval Thresholding [1]
%iterations : Number of averaging iterations for IIT and CIIT methods
%altermethod : Noise altering method
% ‘circ‘ for random circulations
% ‘perm‘ for random permutations
%nofsifts : Number of sifting iterations (it should take a value
% between 5 and 10.
%threstype : Thresholding method
% ‘hard‘ for hard Thresholding
% ‘soft‘ for soft Thresholding (see [2])
% ‘softSCAD‘ for smoothly clipped absolute deviation
% (SCAD) penalty Thresholding (see [2]).
%T_mult : Multiplication factor of the universal threshold. For
% example if T_mult=0.7 then the threshold applied is
% T=0.7*sigma*sqrt(2*log*n)
%M1 : Value of parameter M1 in the reconstruction equation (see
% [1] Eq. (11)).
%IM2 : Sets parameter M2 (see [1] Eq. (11)) equal to the number
% of IMFs resulted from EMD decomposition minus IM2.
% REFERECIES
% [1] Y. Kopsinis S. McLaughlin 揇evelopment of EMD-based Denoising
% Methods Inspired by Wavelet Thresholding?? IEEE Trans. on Signal
% Processing VOL. 57 NO. 4 APRIL 2009.
% [2] Y. Kopsinis S. McLaughlin 揈mpirical Mode Decomposition based
% Soft-Thresholding?? EUSIPCO 2008.
warning(‘off‘‘MATLAB:dispatcher:InexactMatch‘)
n=length(signal);
t=1:n;
if strcmp(method‘IT‘)==1
iterations=1;
end
[IMFlocalmean] = emdfull(signaltnofsifts);
nofIMFs=size(IMF1);
clear localmean
estimenergy_F(1)=(median(abs(IMF(1:)))/0.6745)^2;%这里算的不是能量,是类似于噪声方差的东西。先算出第一层的,然后根据噪声能量估计公式,估计后面层的
for k=2:size(IMF1)+3
estimenergy_F(k)=estimenergy_F(1)/0.719*2.01^(-k);
end
T_mult=T_mult*sqrt(2*log(n));
M2=nofIMFs-IM2;
if strcmp(method‘CIIT‘)==1
clearfirst=1;
else
clearfirst=0;
end
triggered=alteringnoise(IMFiterationsnofsiftsaltermethodclearfirst);
EMDdenoised=EMDdenoise_averaging(IMFtriggered.IMFprostriggered.zcpos_prtriggered.extrema_prestimenergy_FthrestypeT_multM1M2);
end
function out_aver=EMDdenoise_averaging(IMFIMFproszcposextremaIMFenergythrestypemultM1M2)
% IMF: Matrix containing the IMFs
% IMFpros: Cell array containing matrices of IMFs of each different random realization
% IMFenergy: Vector containing the estimated variances of each IMF. If
% isempty [] then the energies of the n_a processed IMFpros are estimated
% separately. If it is equal to 0 then the average of all the IMFpros{} is
% adopted as the final variance
%
% mult: The multipli
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 19911 2010-03-18 15:29 EMD denoising\EMDdenoise.asv
文件 19911 2010-03-18 15:30 EMD denoising\EMDdenoise.m
文件 712 2009-04-12 19:46 EMD denoising\example.m
文件 496 2009-04-12 19:39 EMD denoising\readme.txt.txt
..AD... 0 2010-05-06 20:56 EMD denoising
----------- --------- ---------- ----- ----
41030 5
相关资源
- 基于频域的图像去噪方法
- 噪声自适应完备总体平均经验模态分
- 基于Contourlet变换的图像去噪源代码
- PCNN平滑去噪滤波程序
- EMD程序 瞬时频率计算
- 希尔伯特黄变换工具箱
- 带噪语音信号的多种滤波算法去噪对
- 平移不变小波去噪程序演示
- 基于小波去噪与变换域的信道估计方
- 谱减法代码
- kinect深度图像去噪
- 论文Cryptanalysis of MD4 and RIPEMD的翻译
- eemd的使用和选择
- 语音信号滤波去噪使用 汉宁窗设计的
- nsct与小波变换去噪
- 基于PDE的图像边缘保留去噪源代码
- 基于小波变换的心电信号去噪算法.
- 神经网络图像去噪
- 基于提升小波的图像去噪算法的FPGA设
- 基于积分图的快速非局部去噪算法
- CEEMDAN算法,EEMD和EMD的进一步改进算法
- 图像平滑去噪
- 小波去除音频信号中的噪声,观察频
- EEMD方法和EMD方法抗模态混叠对比研究
- CEEMD-信息熵-完美运行,你指的拥有。
- 基于形态学滤波器对心电信号的去噪
- 轮廓波contourlet工具箱
- EMD端点效应抑制的一种实用方法
- 基于边缘检测的Contourlet 变换图像去噪
- Micro+CT投影图像噪声的去除
评论
共有 条评论