资源简介
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
代码片段和文件信息
相关资源
- Simulation of Active Heave Compensation System
- 广联达6.0写锁包,2020年11月最新
- 机器学习个人笔记完整版v5.2-A4打印版
- 深度学习卷积神经网络可检测和分类
- GAN对抗式生成网络的应用:从图片上
- Experiment investigation of deep-drawing sheet
- TH upstream-inhibited ARHGAP12 subnetwork for
- Bishop - Pattern Recognition And Machine Learn
- [en]深度学习[Deep Learning: Adaptive Compu
- 基于SSD的车辆检测与识别
- 李宏毅-机器学习(视频2017完整)
- 吴恩达深度学习第一课第四周作业及
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- Wikipedia机器学习迷你电子书之四《D
- AV Foundation 开发秘籍 英文版 Learning
- Google DeepMind的David Silver的强化学习课
- Google论文\“Wide & Deep Learning for Recom
- 深度学习在遥感中的应用综述
- Learning From Data Yaser S. Abu-Mostafa
- 深度学习数据集标注
- 《增强学习导论》Reinforcement Learning
- 深度学习算法实践源码-吴岸城
- 德州扑克DeepStack算法.pdf
- 李宏毅深度学习ppt
- SSD目标检测算法论文-英文原版
- 台湾李宏毅教授深度学习讲义 pdf
- deepstack算法详解
- 基于深度学习实现人脸识别包含模型
- 深度学习与PyTorch-代码和PPT.zip
评论
共有 条评论