资源简介
一个BOT的四维模型,内有容积卡尔曼滤波算法(CKF)和本人所提的嵌入式容积卡尔曼滤波(ECKF)算法的比较
代码片段和文件信息
%% ----------------------------------------------------------------
% Bearing-only tracking model for tesing the cubature Kalman filter (CKF)
% and the embedded cubature Kalman filter (ECKF)
%
% Version: 20140307
%
%
% @All rights reserved by Xin-Chun Zhang from UESTC
% You can use the code for learning teaching and education do not use it
% for commerical purpose!
%
%
%
% 参考:
% [1] I.Arasaratnam S.Haykin. Cubature Kalman Filters[J]. IEEE Trans. Automat.
% Control 2009 54(6)
% [2] 张鑫春等. 一种用于目标跟踪的嵌入式容积卡尔曼滤波器设计[C]. 综合电子技术教
% 育部重点实验室2012学术年会论文集,2012
% [3] 张鑫春 等. “均方根嵌入式容积卡尔曼滤波“ 控制理论与应用 2013 30(9).
% [4] Xin-Chun Zhang Yun-Long Teng. A new derivation of the cubature
% Kalman filters [J]. Asian Journal of Control 2013 Accept
% [5] Xin-Chun Zhang A novel cubature Kalman filter for nonlinear state
% estimation [C]. 52nd IEEE Conference on Decision and Control
% Florence Italy 2013
% [6] Zhang Xin-Chun Guo Cheng-Jun Cubature Kalman filters: Derivation
% and extension [J]. Chinese Physics B 2013 22(12)
% [7] Xin-Chun Zhang. Cubature information filter using embedded and
% high-degree cubature rules [J]. Circuits Systems and Signal
% processing Accept(2013)/Online(2014)
%
%
%
%
%
% By Xin-Chun Zhang
% E-mail:irving_zhang@163.com
% University of Electronic Science and Technology of China
%% ----------------------------------------------------------------
clear all;
close all;
clc;
h = waitbar(0 ‘1‘ ‘Name‘ ‘Please wait ...‘ ‘Windowstyle‘ ‘modal‘ ...
‘CreateCancelBtn‘ ‘setappdata(gcbf‘‘canceling‘‘1)‘);
setappdata(h ‘canceling‘ 0);
% Global variables
global Q R fai gama kesi w n m w1 w2 kesi_im3 b ;
Q = 0.0005^2; % process noise
R = 0.001^2; % measurement noise
fai = [1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1];
gama = [0.5 0; 1 0; 0 0.5; 0 1];
n = 4; %dimension of the system
m = 2 * n; % Number of cubature points
% 3rd-degree CKF/SCKF
w = 1 / m; % Weight
kesi1 = eye(n);
kesi2 = -eye(n);
kesi = [kesi1 kesi2] * (sqrt(m / 2)); % Construction of the cubature points
% 3rd-degree ECKF
delta = 1;
w1 = 1 / (2^(n + 1) * delta);
w2 = 1 - 1 / (2 * delta);
yitao = zeros(n 1);
yitak1 = [1 1 1 1; 1 1 1 -1; 1 1 -1 -1; 1 -1 -1 -1; 1 -1 1 1; 1 -1 -1 1; ...
1 -1 1 -1; 1 1 -1 1]‘ * sqrt(2 * delta);
kesi_im3 = [yitak1 -yitak1 yitao];
[a b] = size(kesi_im3);
num = 30; % steps of the simulation
xarray_sum = zeros(n num + 1);
xhatarray_sum = zeros(n num + 1);
error_avg = zeros(n num + 1);
xhatarray_S_sum = zeros(n num + 1);
error_S_avg = zeros(n num + 1);
xhatarray_5_sum = zeros(n num + 1);
error_5_avg = zeros(n num + 1);
xhatarray_I_sum = zeros(n num + 1);
error_I_avg = zeros(n num + 1);
len = 100;
for iter = 1 : len
if getappdata(h ‘canceling‘)
iter = iter - 1;
break;
end
waitbar(iter / len h sprintf(‘%
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 4846 2014-03-07 22:36 BOT\Main.m
文件 1556 2014-03-07 22:23 BOT\Third_degree_CKF.m
文件 2401 2014-03-07 22:26 BOT\Third_degree_ECKF.m
目录 0 2014-03-07 22:37 BOT
----------- --------- ---------- ----- ----
8803 4
相关资源
- 使用kalman滤波实现动态行人检测与跟
- ckeditor+ckfinder配置+操作详解,实现上
- 行人跟踪OPENCV代码
- CrackForest数据集
- Fundamentals of Kalman Filtering: A Practical
- Blackfin系列DSP中文书籍
- Fundamentals of Kalman Filtering A Practical A
- kalman滤波实现视频目标跟踪
- kalman滤波理论及其在导航系统中的应
- R语言数据挖掘实验报告——美国黑色
- StardockFences3.0.3(FULL+Patch).zip
- CKEditor3.6.2+CKFinder2.1 最新破解版
- 卡尔曼滤波与组合导航原理.pdf
- 《kalman滤波理论及其在导航系统中的
- SLAM经典入门教程
- 神经网络算法在自适应卡尔曼滤波器
- 一种基于改进Kalman滤波的视觉_惯性组
- 二维Kalman滤波
- 基于ViBe+Kalman的目标跟踪
- meanshift+kalman
- Kalman.rar
- meanshift+kalman目标跟踪
- 基于卡尔曼滤波的GPS数据处理研究
- Kalman滤波理论及其在导航系统中的应
- 最优状态估计 Dan Simon
- 基于 Kalman 滤波的 MEMS 陀螺仪滤波算法
- camshift与kalman结合实现视频序列中目标
- 卡尔曼滤波用于单目标定位的程序
- Kalman滤波原理及程序手册.doc282116
- 最优估计大作业:基于kalman滤波的组
评论
共有 条评论