资源简介
python实现机器学习之决策树分类算法,简单易学,而且可直接运行。

代码片段和文件信息
‘‘‘
Created on Oct 14 2010
@author: Peter Harrington
‘‘‘
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle=“sawtooth“ fc=“0.8“)
leafNode = dict(boxstyle=“round4“ fc=“0.8“)
arrow_args = dict(arrowstyle=“<-“)
def getNumLeafs(myTree):
numLeafs = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__==‘dict‘:#test to see if the nodes are dictonaires if not they are leaf nodes
numLeafs += getNumLeafs(secondDict[key])
else: numLeafs +=1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = myTree.keys()[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__==‘dict‘:#test to see if the nodes are dictonaires if not they are leaf nodes
thisDepth = 1 + getTreeDepth(secondDict[key])
else: thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
def plotNode(nodeTxt centerPt parentPt nodeType):
createPlot.ax1.annotate(nodeTxt xy=parentPt xycoords=‘axes fraction‘
xytext=centerPt textcoords=‘axes fraction‘
va=“center“ ha=“center“ bbox=nodeType arrowprops=arrow_args )
def plotMidText(cntrPt parentPt txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
createPlot.ax1.text(xMid yMid txtString va=“center“ ha=“center“ rotation=30)
def plotTree(myTree parentPt nodeTxt):#if the first key tells you what feat was split on
numLeafs = getNumLeafs(myTree) #this determines the x width of this tree
depth = getTreeDepth(myTree)
firstStr = myTree.keys()[0] #the text label for this node should be this
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW plotTree.yOff)
plotMidText(cntrPt parentPt nodeTxt)
plotNode(firstStr cntrPt parentPt decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__==‘dict‘:#test to see if the nodes are dictonaires if not they are leaf nodes
plotTree(secondDict[key]cntrPtstr(key)) #recursion
else: #it‘s a leaf node print the leaf node
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
plotNode(secondDict[key] (plotTree.xOff plotTree.yOff) cntrPt leafNode)
plotMidText((plotTree.xOff plotTree.yOff) cntrPt str(key))
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it‘s a tree and the first element will be another dict
def createPlot(inTree):
fig = plt.figure(1 facecolor=‘white‘)
fig.clf()
axprops = dict(xticks=[] yticks=[])
createPlot.ax1 = plt.subplot(111 frameon=False **axprops) #no ti
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 101 2010-10-16 09:36 决策树+python\classifierStorage.txt
文件 795 2012-01-09 21:40 决策树+python\lenses.txt
文件 3911 2012-01-09 21:39 决策树+python\treePlotter.py
文件 3399 2012-01-09 21:39 决策树+python\treePlotter.pyc
文件 4170 2011-12-11 20:40 决策树+python\trees.py
文件 3692 2012-01-09 21:06 决策树+python\trees.pyc
目录 0 2018-07-23 10:12 决策树+python
----------- --------- ---------- ----- ----
16068 7
相关资源
- KNN算法实战
- NSGA3多目标优化算法
- 机器学习k means算法实现图像分割
- 帝国竞争算法python实现
- 你也能看得懂的Python算法书 代码
- 人工智能算法实现mnist手写数字识别
- kmeans聚类算法的python实现程序
- 蚁群算法解决tsp问题
- 遗传算法解决第一类生产平衡问题
- a*算法的python版
- 深度学习YOLOv3分类算法
- BP算法手写梯度计算
- Python RC4算法
- tensorflow2.0 yolo3目标检测算法
- python实现SGBM图像匹配算法
- 带书签-数据结构与算法 Python语言描
- 2019届华为软件精英挑战赛A*算法实现
- 图像分割-snake算法 python版本
- 基于PyQt实现可视化宽度优先、深度优
- 蚁狮算法(Ant Lion AlgorithmPython实现和
- 基于自编写的随机森林算法的adult数据
- VMD变分模态分解算法
- miller_rabin检测生成大素数的RSA算法实
- python遗传算法解决八皇后问题
- 计算机语言学n-gram算法的python实现
- Introduction to Programming in Python An Inter
- 多目标优化算法(二)MOEADMATLAB
- 决策树算法的PPT与实现代码
- 用python实现sm2国密算法
- 基于Python完成张军版计算智能相关算
评论
共有 条评论