资源简介
高斯混合模型是一种经典的背景建模模型,已成功运用于工程应用中。在声音相关的领域,也有广泛的应用。
代码片段和文件信息
function demo1
%
% Demo of Gaussian Mixture Regression (GMR).
% This source code is the implementation of the algorithms described in
% Section 2.4 p.38 of the book “Robot Programming by Demonstration: A
% Probabilistic Approach“.
%
% Author: Sylvain Calinon 2009
% http://programming-by-demonstration.org
%
% The program loads a 3D dataset trains a Gaussian Mixture Model
% (GMM) and retrieves a generalized version of the dataset with associated
% constraints through Gaussian Mixture Regression (GMR). Each datapoint
% has 3 dimensions consisting of 1 temporal value and 2 spatial values
% (e.g. drawing on a 2D Cartesian plane). A sequence of temporal values is
% used as query points to retrieve a sequence of expected spatial
% distributiuon through Gaussian Mixture Regression (GMR).
%
% This source code is given for free! However I would be grateful if you refer
% to the book (or corresponding article) in any academic publication that uses
% this code or part of it. Here are the corresponding BibTex references:
%
% @book{Calinon09book
% author=“S. Calinon“
% title=“Robot Programming by Demonstration: A Probabilistic Approach“
% publisher=“EPFL/CRC Press“
% year=“2009“
% note=“EPFL Press ISBN 978-2-940222-31-5 CRC Press ISBN 978-1-4398-0867-2“
% }
%
% @article{Calinon07
% title=“On Learning Representing and Generalizing a Task in a Humanoid Robot“
% author=“S. Calinon and F. Guenter and A. Billard“
% journal=“IEEE Transactions on Systems Man and Cybernetics Part B“
% year=“2007“
% volume=“37“
% number=“2“
% pages=“286--298“
% }
%% Definition of the number of components used in GMM.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbStates = 4;
%% Load a dataset consisting of 3 demonstrations of a 2D signal.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load(‘data/data1.mat‘); %load ‘Data‘
nbVar = size(Data1);
%% Training of GMM by EM algorithm initialized by k-means clustering.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Priors Mu Sigma] = EM_init_kmeans(Data nbStates);
[Priors Mu Sigma] = EM(Data Priors Mu Sigma);
%% Use of GMR to retrieve a generalized version of the data and associated
%% constraints. A sequence of temporal values is used as input and the
%% expected distribution is retrieved.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
expData(1:) = linspace(min(Data(1:)) max(Data(1:)) 100);
[expData(2:nbVar:) expSigma] = GMR(Priors Mu Sigma expData(1:) [1] [2:nbVar]);
%% Plot of the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(‘position‘[10101000800]‘name‘‘GMM-GMR-demo1‘);
%plot 1D
for n=1:nbVar-1
subplot(3*(nbVar-1)2(n-1)*2+1); hold on;
plot(Data(1:) Data(n+1:) ‘x‘ ‘markerSize‘ 4 ‘color‘ [.3 .3 .3]);
axis([min(D
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2009-07-22 17:24 GMM-GMR-v2.0\
目录 0 2009-04-03 19:32 GMM-GMR-v2.0\data\
文件 7384 2008-04-18 14:26 GMM-GMR-v2.0\data\data1.mat
文件 9784 2008-04-18 14:26 GMM-GMR-v2.0\data\data2_a.mat
文件 1800 2008-04-18 14:26 GMM-GMR-v2.0\data\data2_b.mat
文件 7392 2008-04-18 14:27 GMM-GMR-v2.0\data\data3_a.mat
文件 7392 2008-04-18 14:27 GMM-GMR-v2.0\data\data3_b.mat
文件 4836 2009-07-22 17:29 GMM-GMR-v2.0\demo1.m
文件 4469 2009-07-22 17:29 GMM-GMR-v2.0\demo2.m
文件 6157 2009-07-22 17:28 GMM-GMR-v2.0\demo3.m
文件 5553 2009-07-22 17:29 GMM-GMR-v2.0\EM.m
文件 1645 2009-07-22 17:25 GMM-GMR-v2.0\EM_init_kmeans.m
文件 958 2009-07-22 17:25 GMM-GMR-v2.0\gaussPDF.m
文件 5109 2009-07-22 17:34 GMM-GMR-v2.0\GMR.m
文件 1985 2009-07-22 17:35 GMM-GMR-v2.0\plotGMM.m
文件 1336 2009-07-24 15:25 license.txt
- 上一篇:语音识别的MATLAB代码
- 下一篇:hough变换的MATLAB程序
相关资源
- 混合高斯建模加meanshift算法matlab代码
- GMM代码用于目标检测
- GMM的matlab实现集合
- GMM模型,用MATlab编写的。可以用来训
- EM算法训练GMM的聚类函数vq_flat看评论
- 高斯混合模型GMM 及高斯混合回归MAT
- matlab写的GMM代码
- GMM 混合高斯背景建模
- 声纹识别
- GMMP SkinColor
- 高斯混合模型(GMM)
- GMM-UBM系统框架的MAP算法
- GMM,HMM的语音识别,说话人识别源码
- GMM GMM的说话人识别系统
- GMM 本代码建立高斯混合模型(高斯多
- MFCC-GMM 基于MFCC的GMM的说话人识别
- speech-emotion-recognition-system gmm模型下的
- GMMsegmation
- GMM 做毕设是用到的gmm的matlab程序
- Voice_Conversion_1 基于GMM模型实现语音转
- clustering 使用K-means
- HMM_GMM 一个有效的
- GMM GMM说话人识别平台全套
- voice-conversion--MFCC-GMM 实现多个人的说
- GMM 建立了混合高斯模型
- mulgmm 利用混合高斯模型对图像序列经
- SpeakerMFCCGMM
- 高斯混合模型matlab代码
- 二维高斯混合模型GMM图形化简单明了
评论
共有 条评论