资源简介
关于高斯混合模型(GMM)的matlab源代码:-On the Gaussian mixture model (GMM) of the matlab source code:
代码片段和文件信息
function y = cmvnpdf(X Mu Sigma)
%CMVNPDF - (Complex range) multivariate normal probability density function (pdf).
% Y = CMVNPDF(X) returns the n-by-1 vector Y containing the probability
% density of the multivariate normal distribution with zero mean and
% identity covariance matrix evaluated at each row of the n-by-d matrix
% X. Rows of X correspond to observations and columns correspond to
% variables or coordinates.
%
% Y = CMVNPDF(XMU) returns the density of the multivariate normal
% distribution with mean MU and identity covariance matrix evaluated
% at each row of X. MU is a 1-by-d vector or an n-by-d matrix in which
% case the density is evaluated for each row of X with the corresponding
% row of MU. MU can also be a scalar value which CMVNPDF replicates to
% match the size of X.
%
% Y = CMVNPDF(XMUSIGMA) returns the density of the multivariate normal
% distribution with mean MU and covariance SIGMA evaluated at each row
% of X. SIGMA is a d-by-d matrix or an d-by-d-by-n array in which case
% the density is evaluated for each row of X with the corresponding page
% of SIGMA i.e. CMVNPDF computes Y(I) using X(I:) and SIGMA(::I).
% Pass in the empty matrix for MU to use its default value when you want
% to only specify SIGMA.
%
% If X is a 1-by-d vector CMVNPDF replicates it to match the leading
% dimension of MU or the trailing dimension of SIGMA.
%
% Example:
%
% mu = [1 -1];
% Sigma = [.9 .4; .4 .3];
% X = mvnrnd(mu Sigma 10);
% p = cmvnpdf(X mu Sigma);
%
% See also MVNRND NORMPDF.
% Copyright 1993-2002 The MathWorks Inc.
% Revision: 1.2 Date: 2002/03/28 16:51:27
% Modified by Pekka Paalanen LUT 2003
%
%
% $Name: $
% $Revision: 1.1 $ $Date: 2004/08/16 15:06:44 $
if nargin < 1 | isempty(X)
error(‘Requires the input argument X.‘);
elseif ndims(X) > 2
error(‘X must be a matrix.‘);
end
% Get size of data. Column vectors provisionally interpreted as multiple scalar data.
[nd] = size(X);
% Assume zero mean data are already centered
if nargin < 2 | isempty(Mu)
X0 = X;
% Get scalar mean and use it to center data
elseif prod(size(Mu)) == 1
X0 = X - Mu;
% Get vector mean and use it to center data
elseif ndims(Mu) == 2
[n2d2] = size(Mu);
if d2 ~= d % has to have same number of coords as X
error(‘X and MU must have the same number of columns.‘);
elseif n2 == n % lengths match
X0 = X - Mu;
elseif n2 == 1 % mean is a single row rep it out to match data
X0 = X - repmat(Mun1);
elseif n == 1 % data is a single row rep it out to match mean
n = n2;
X0 = repmat(Xn21) - Mu;
else % sizes don‘t match
error(‘X or MU must be a row vector or X and MU must have the same number of rows.‘);
end
else
error(‘MU must be a matrix.‘);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 6613 2005-04-06 21:25 (GMM)matlab源码\cmvnpdf.m
文件 3208 2005-04-06 21:18 (GMM)matlab源码\covfixer2.m
文件 1104 2005-06-02 16:10 (GMM)matlab源码\estS_generate.m
文件 1099 2005-04-04 11:37 (GMM)matlab源码\getargs.m
文件 1008 2005-04-07 13:58 (GMM)matlab源码\gmmb_cmeans.m
文件 10323 2005-04-07 18:25 (GMM)matlab源码\gmmb_em.m
文件 1132 2005-04-07 12:25 (GMM)matlab源码\gmmb_em_init_cmeans1.m
文件 1221 2005-04-06 21:13 (GMM)matlab源码\gmmb_em_init_fcm1.m
文件 1227 2005-04-04 11:43 (GMM)matlab源码\init_fcm1.m
文件 474 2005-04-06 21:09 (GMM)matlab源码\warning_wrap.m
文件 248 2006-10-17 11:23 (GMM)matlab源码\注意.txt
目录 0 2008-10-17 16:53 (GMM)matlab源码
----------- --------- ---------- ----- ----
27875 13
相关资源
- 高斯混合模型matlab实现
- 混合高斯建模加meanshift算法matlab代码
- GMM代码用于目标检测
- GMM的matlab实现集合
- GMM模型,用MATlab编写的。可以用来训
- EM算法训练GMM的聚类函数vq_flat看评论
- 高斯混合模型的后验概率代码
- 高斯混合模型GMM 及高斯混合回归MAT
- 高斯混合模型说话人识别
- matlab写的GMM代码
- GMM 混合高斯背景建模
- 声纹识别
- GMMP SkinColor
- 高斯混合模型(GMM)
- GMM-UBM系统框架的MAP算法
- GMM,HMM的语音识别,说话人识别源码
- GMM GMM的说话人识别系统
- GMM 本代码建立高斯混合模型(高斯多
- MFCC-GMM 基于MFCC的GMM的说话人识别
- speech-emotion-recognition-system gmm模型下的
- GMMsegmation
- GMM 做毕设是用到的gmm的matlab程序
- Voice_Conversion_1 基于GMM模型实现语音转
- clustering 使用K-means
- HMM_GMM 一个有效的
- GMM GMM说话人识别平台全套
- voice-conversion--MFCC-GMM 实现多个人的说
- GMM 建立了混合高斯模型
- mulgmm 利用混合高斯模型对图像序列经
- SpeakerMFCCGMM
评论
共有 条评论