• 大小: 6KB
    文件类型: .m
    金币: 1
    下载: 0 次
    发布日期: 2021-06-18
  • 语言: Matlab
  • 标签:

资源简介

公路运量主要包括公路客运量和公路货运量两方面。某个地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,已知该地区20年(1990-2009)的公路运量相关数据如下:样本数据较多,且已知影响数据的因素(三大因素:该地区的人数、机动车数量和公路面积),可考虑将其作为BP神经网络的训练集,对该神经网络进行训练,然后对训练好的神经网络进行测试,最后使用测试合格的神经网络进行预测工作。

资源截图

代码片段和文件信息

numberOfSample = 20; %输入样本数量
%取测试样本数量等于输入(训练集)样本数量,因为输入样本(训练集)容量较少,否则一般必须用新鲜数据进行测试
numberOfTestSample = 20; 
numberOfForcastSample = 2; 
numberOfHiddenNeure = 8;
inputDimension = 3;
outputDimension = 2;


%准备好训练集

%人数(单位:万人)
numberOfPeople=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
%机动车数(单位:万辆)
numberOfAutomobile=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6 2.7 2.85 2.95 3.1];
%公路面积(单位:万平方公里)
roadArea=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 0.56 0.59 0.59 0.67 0.69 0.79];
%公路客运量(单位:万人)
passengerVolume = [5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 22598 25107 33442 36836 40548 42927 43462];
%公路货运量(单位:万吨)
freightVolume = [1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 13320 16762 18673 20724 20803 21804];

%由系统时钟种子产生随机数
rand(‘state‘ sum(100*clock));

%输入数据矩阵
input = [numberOfPeople; numberOfAutomobile; roadArea];
%目标(输出)数据矩阵
output = [passengerVolume; freightVolume];

%对训练集中的输入数据矩阵和目标数据矩阵进行归一化处理
[sampleInput minp maxp tmp mint maxt] = premnmx(input output);

%噪声强度
noiseIntensity = 0.01;
%利用正态分布产生噪声
noise = noiseIntensity * randn(outputDimension numberOfSample);
%给样本输出矩阵tmp添加噪声,防止网络过度拟合
sampleOutput = tmp + noise;

%取测试样本输入(输出)与输入样本相同,因为输入样本(训练集)容量较少,否则一般必须用新鲜数据进行测试
testSampleInput = sampleInput;
testSampleOutput = sampleOutput;

%最大训练次数
maxEpochs = 50000;

%网络的学习速率
learningRate = 0.035;

%训练网络所要达到的目标误差
error0 = 0.65*10^(-3);

%初始化输入层与隐含层之间的权值
W1 = 0.5 * rand(numberOfHiddenNeure inputDimension) - 0.1;
%初始化输入层与隐含层之间的阈值
B1 = 0.5 * rand(numberOfHiddenNeure 1) - 0.1;
%初始化输出层与隐含层之间的权值
W2 = 0.5 * rand(outputDimension numberOfHiddenNeure) - 0.1;
%初始化输出层与隐含层之间的阈值
B2 = 0.5 * rand(outputDimension 1) - 0.1;

%保存能量函数(误差平方和)的历史记录
errorHistory = [];

for i = 1:maxEpochs
    %隐含层输出
    hiddenOutput = logsig(W1 * sampleInput + repmat(B1 1 numberOfSample));
    %输出层输出
    networkOutput = W2 * hiddenOutput + repmat(B2 1 numberOfSample);
    %实际输出与网络输出之差
    error = sampleOutput - networkOutput;
    %计算能量函数(误差平方和)
    E = sumsqr(error);
    errorHistory = [errorHistory E];

    if E < error0
        break;
    end

    %以下依据能量函数的负梯度下降原理对权值和阈值进行调整
    delta2 = error;
    delta1 = W2‘ * delta2.*hidd

评论

共有 条评论