资源简介
基于遗传算法的BP神经网络优化算法,MATLAB智能算法30个案例分析的例程,正确完整
代码片段和文件信息
function err=Bpfun(xPThiddennumP_testT_test)
%% 训练&测试BP网络
%% 输入
% x:一个个体的初始权值和阈值
% P:训练样本输入
% T:训练样本输出
% hiddennum:隐含层神经元数
% P_test:测试样本输入
% T_test:测试样本期望输出
%% 输出
% err:预测样本的预测误差的范数
inputnum=size(P1); % 输入层神经元个数
outputnum=size(T1); % 输出层神经元个数
%% 新建BP网络
net=newff(minmax(P)[hiddennumoutputnum]{‘tansig‘‘logsig‘}‘trainlm‘);
%% 设置网络参数:训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000;
net.trainParam.goal=0.01;
LP.lr=0.1;
net.trainParam.show=NaN;
% net.trainParam.showwindow=false; %高版MATLAB
%% BP神经网络初始权值和阈值
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
w1=x(1:w1num); %初始输入层到隐层的权值
B1=x(w1num+1:w1num+hiddennum); %初始隐层阈值
w2=x(w1num+hiddennum+1:w1num+hiddennum+w2num); %初始隐层到输出层的阈值
B2=x(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum); %输出层阈值
net.iw{11}=reshape(w1hiddennuminputnum);
net.lw{21}=reshape(w2outputnumhiddennum);
net.b{1}=reshape(B1hiddennum1);
net.b{2}=reshape(B2outputnum1);
%% 训练网络以
net=train(netPT);
%% 测试网络
Y=sim(netP_test);
err=norm(Y-T_test);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 1282 2010-11-14 00:48 chapter3 基于遗传算法的BP神经网络优化算法\BPfun.m
文件 1864 2011-03-31 19:30 chapter3 基于遗传算法的BP神经网络优化算法\callbackfun.m
目录 0 2018-01-19 12:20 chapter3 基于遗传算法的BP神经网络优化算法
----------- --------- ---------- ----- ----
3146 3
- 上一篇:汽车车速智能模糊控制
- 下一篇:SVM神经网络的数据分类预测-matlab
相关资源
- Pattern Recognition and Machine Learning(高清
- MATLAB 编程 第二版 Stephen J. Chapman 著
- 均值滤波和FFT频谱分析Matlab代码
- 《MATLAB扩展编程》代码
- HDB3码、AMI码的MATLAB实现
- 3点GPS定位MATLAB仿真
- MATLAB数字信号处理85个实用案例精讲入
- matlab从入门到精通pdf94795
- 基于BP神经网络的语音情感识别系统
- 欧拉放大论文及matlab代码
- 跳一跳辅助_matlab版本
- 全面详解LTE MATLAB建模、仿真与实现
- MIMO-OFDM无线通信技术及MATLAB实现_孙锴
- MATLAB Programming for Engineers 4th - Chapman
- matlab 各种谱分析对比
- 分数阶chen混沌matlab程序
- 蚁群算法论文+源代码
- 基于粒子群算法的非合作博弈的matl
- MATLAB车流仿真 包括跟驰、延误
- matlab空间桁架计算程序
- 基于MATLAB的图像特征点匹配和筛选
- DMA-TVP-FAVAR
- GPS信号的码捕获matlab代码.7z
- 一维光子晶体MATLAB仿真代码吸收率折
- newmark法源程序
- 协同进化遗传算法求解函数优化问题
- 传统关联成像、计算鬼成像matlab
- pri传统分选算法
- 摆动滚子推杆盘形凸轮设计
- 高斯正反算批量计算
评论
共有 条评论