资源简介
基于遗传算法的BP神经网络优化算法,MATLAB智能算法30个案例分析的例程,正确完整
代码片段和文件信息
function err=Bpfun(xPThiddennumP_testT_test)
%% 训练&测试BP网络
%% 输入
% x:一个个体的初始权值和阈值
% P:训练样本输入
% T:训练样本输出
% hiddennum:隐含层神经元数
% P_test:测试样本输入
% T_test:测试样本期望输出
%% 输出
% err:预测样本的预测误差的范数
inputnum=size(P1); % 输入层神经元个数
outputnum=size(T1); % 输出层神经元个数
%% 新建BP网络
net=newff(minmax(P)[hiddennumoutputnum]{‘tansig‘‘logsig‘}‘trainlm‘);
%% 设置网络参数:训练次数为1000,训练目标为0.01,学习速率为0.1
net.trainParam.epochs=1000;
net.trainParam.goal=0.01;
LP.lr=0.1;
net.trainParam.show=NaN;
% net.trainParam.showwindow=false; %高版MATLAB
%% BP神经网络初始权值和阈值
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
w1=x(1:w1num); %初始输入层到隐层的权值
B1=x(w1num+1:w1num+hiddennum); %初始隐层阈值
w2=x(w1num+hiddennum+1:w1num+hiddennum+w2num); %初始隐层到输出层的阈值
B2=x(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum); %输出层阈值
net.iw{11}=reshape(w1hiddennuminputnum);
net.lw{21}=reshape(w2outputnumhiddennum);
net.b{1}=reshape(B1hiddennum1);
net.b{2}=reshape(B2outputnum1);
%% 训练网络以
net=train(netPT);
%% 测试网络
Y=sim(netP_test);
err=norm(Y-T_test);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 1282 2010-11-14 00:48 chapter3 基于遗传算法的BP神经网络优化算法\BPfun.m
文件 1864 2011-03-31 19:30 chapter3 基于遗传算法的BP神经网络优化算法\callbackfun.m
目录 0 2018-01-19 12:20 chapter3 基于遗传算法的BP神经网络优化算法
----------- --------- ---------- ----- ----
3146 3
- 上一篇:汽车车速智能模糊控制
- 下一篇:SVM神经网络的数据分类预测-matlab
相关资源
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
- k近邻算法matlab实现
- matlab识别系统
- 神经网络分类matlab程序
- matlab正弦信号发生器的设计
- matlab程序用Hopfield网络解决TSP
评论
共有 条评论