资源简介
代码亲测可用,直接调用stoi函数,格式是stoi(x,y,fs),分别是干净语音,带噪语音,采样频率
代码片段和文件信息
function d = stoi(x y fs_signal)
% d = stoi(x y fs_signal) returns the output of the short-time
% objective intelligibility (STOI) measure described in [1 2] where x
% and y denote the clean and processed speech respectively with sample
% rate fs_signal in Hz. The output d is expected to have a monotonic
% relation with the subjective speech-intelligibility where a higher d
% denotes better intelligible speech. See [1 2] for more details.
%
% References:
% [1] C.H.Taal R.C.Hendriks R.Heusdens J.Jensen ‘A Short-Time
% objective Intelligibility Measure for Time-Frequency Weighted Noisy
% Speech‘ ICASSP 2010 Texas Dallas.
%
% [2] C.H.Taal R.C.Hendriks R.Heusdens J.Jensen ‘An Algorithm for
% Intelligibility Prediction of Time-Frequency Weighted Noisy Speech‘
% IEEE Transactions on Audio Speech and Language Processing 2011.
%
%
% Copyright 2009: Delft University of Technology Signal & Information
% Processing Lab. The software is free for non-commercial use. This program
% comes WITHOUT ANY WARRANTY.
%
%
%
% Updates:
% 2011-04-26 Using the more efficient ‘taa_corr‘ instead of ‘corr‘
if length(x)~=length(y)
error(‘x and y should have the same length‘);
end
% initialization
x = x(:); % clean speech column vector
y = y(:); % processed speech column vector
fs = 10000; % sample rate of proposed intelligibility measure
N_frame = 256; % window support
K = 512; % FFT size
J = 15; % Number of 1/3 octave bands
mn = 150; % Center frequency of first 1/3 octave band in Hz.
H = thirdoct(fs K J mn); % Get 1/3 octave band matrix
N = 30; % Number of frames for intermediate intelligibility measure (Length analysis window)
Beta = -15; % lower SDR-bound
dyn_range = 40; % speech dynamic range
% resample signals if other samplerate is used than fs
if fs_signal ~= fs
x = resample(x fs fs_signal);
y = resample(y fs fs_signal);
end
% remove silent frames
[x y] = removeSilentframes(x y dyn_range N_frame N_frame/2);
% apply 1/3 octave band TF-decomposition
x_hat = stdft(x N_frame N_frame/2 K); % apply short-time DFT to clean speech
y_hat = stdft(y N_frame N_frame/2 K); % apply short-time DFT to processed speech
x_hat = x_hat(: 1:(K/2+1)).‘; % take clean single-sided spectrum
y_hat = y_hat(: 1:(K/2+1)).‘; % take processed single-sided spectrum
X = zeros(J size(x_hat 2)); % init memory for clean speech 1/3 octave band TF-representation
Y = zeros(J size(y_
- 上一篇:matlab的pwm函数编写
- 下一篇:水平集图像分割的Matlab程序代码
相关资源
- 基于MATLAB的质点弹道计算与外弹道优
- 阵列天线的matlab仿真
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 天线阵的波束形成在MATLAB仿真程序及
- 非线性SVM算法-matlab实现
- 《MATLAB 智能算法超级学习手册》-程序
- 组合导航matlab程序
- 读取txt文件内容matlab代码实现
- Matlab实现基于相关的模板匹配程序
- matlab优化工具箱讲解
- 基于MATLAB的快速傅里叶变换
- 光纤传输中的分布傅立叶算法matlab实
- 基于matlab的图像处理源程序
- matlab 椭圆拟合程序
- 算术编码解码matlab源代码
- optical_flow 光流法 matlab 实现程序
- 引导图像滤波器 Matlab实现
- 分形几何中一些经典图形的Matlab画法
- OFDM系统MATLAB仿真代码
- SVM工具箱(matlab中运行)
- 图像小波变换MatLab源代码
- LU分解的MATLAB实现
- 冈萨雷斯数字图像处理matlab版(第三
- 替代数据法的matlab程序
- 用matlab实现的多站定位系统性能仿真
- 通过不同方法进行粗糙集属性约简m
- k近邻算法matlab实现
- matlab识别系统
- 神经网络分类matlab程序
评论
共有 条评论