资源简介
data
linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital
computing, the
Kalman filter
has been the subject of extensive research and application,
particularly in the area of autonomous or assisted navigation. A very “friendly” introduction to the
general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete
introductory discussion can be found in [Sorenson70], which also contains some interesting
historical narrative. More extensive references include [Gelb74; Grewal93; Maybeck79; Lewis86;
Brown92; Jacobs93].
代码片段和文件信息
function [FHQRinitx initV] = AR_to_SS(coef C y)
%
% Convert a vector auto-regressive model of order k to state-space form.
% [FHQR] = AR_to_SS(coef C y)
%
% X(i) = A(1) X(i-1) + ... + A(k) X(i-k+1) + v where v ~ N(0 C)
% and A(i) = coef(::i) is the weight matrix for i steps ago.
% We initialize the state vector with [y(:k)‘ ... y(:1)‘]‘ since
% the state vector stores [X(i) ... X(i-k+1)]‘ in order.
[s s2 k] = size(coef); % s is the size of the state vector
bs = s * ones(1k); % size of each block
F = zeros(s*k);
for i=1:k
F(block(1bs) block(ibs)) = coef(::i);
end
for i=1:k-1
F(block(i+1bs) block(ibs)) = eye(s);
end
H = zeros(1*s k*s);
% we get to see the most recent component of the state vector
H(block(1bs) block(1bs)) = eye(s);
%for i=1:k
% H(block(1bs) block(ibs)) = eye(s);
%end
Q = zeros(k*s);
Q(block(1bs) block(1bs)) = C;
R = zeros(s);
initx = zeros(k*s 1);
for i=1:k
initx(block(ibs)) = y(: k-i+1); % concatenate the first k observation vectors
end
initV = zeros(k*s); % no uncertainty about the state (since perfectly observable)
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2005-10-17 23:27 kalman滤波工具箱
目录 0 2005-10-17 23:27 kalman滤波工具箱\KalmanAll
..AD... 0 2005-10-17 23:27 kalman滤波工具箱\KalmanAll\Kalman
文件 1107 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\AR_to_SS.m
文件 425 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\convert_to_lagged_form.m
文件 354 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\ensure_AR.m
文件 1045 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\eval_AR_perf.m
文件 2899 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\kalman_filter.m
文件 2392 2002-11-01 16:32 kalman滤波工具箱\KalmanAll\Kalman\kalman_forward_backward.m
文件 1584 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\kalman_smoother.m
文件 1840 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\kalman_update.m
文件 1022 2002-10-23 08:17 kalman滤波工具箱\KalmanAll\Kalman\learning_demo.m
文件 819 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\learn_AR.m
文件 687 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\learn_AR_diagonal.m
文件 5498 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\learn_kalman.m
文件 485 2004-06-07 07:39 kalman滤波工具箱\KalmanAll\Kalman\README.txt
文件 535 2003-01-18 13:47 kalman滤波工具箱\KalmanAll\Kalman\README.txt~
文件 1797 2003-01-24 11:36 kalman滤波工具箱\KalmanAll\Kalman\sample_lds.m
文件 1199 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\smooth_update.m
文件 579 2002-05-29 08:59 kalman滤波工具箱\KalmanAll\Kalman\SS_to_AR.m
文件 28 2005-06-08 18:56 kalman滤波工具箱\KalmanAll\Kalman\testKalman.m
文件 1960 2003-01-18 14:49 kalman滤波工具箱\KalmanAll\Kalman\tracking_demo.m
..AD... 0 2005-10-17 23:27 kalman滤波工具箱\KalmanAll\KPMstats
文件 267 2005-05-03 13:08 kalman滤波工具箱\KalmanAll\KPMstats\#histCmpChi2.m#
文件 1955 2005-04-25 19:29 kalman滤波工具箱\KalmanAll\KPMstats\beta_sample.m
文件 199 2005-04-25 19:29 kalman滤波工具箱\KalmanAll\KPMstats\chisquared_histo.m
文件 1326 2005-04-25 19:29 kalman滤波工具箱\KalmanAll\KPMstats\chisquared_prob.m
文件 1389 2005-04-25 19:29 kalman滤波工具箱\KalmanAll\KPMstats\chisquared_readme.txt
文件 2127 2005-04-25 19:29 kalman滤波工具箱\KalmanAll\KPMstats\chisquared_table.m
文件 5884 2005-04-25 19:29 kalman滤波工具箱\KalmanAll\KPMstats\clg_Mstep.m
............此处省略270个文件信息
评论
共有 条评论