• 大小: 706KB
    文件类型: .zip
    金币: 1
    下载: 0 次
    发布日期: 2021-05-14
  • 语言: C/C++
  • 标签: opencv  C++语言  

资源简介

利用opencv实现简单的条形码检测与识别-C++语言实现。利用opencv实现简单的条形码检测与识别-C++语言实现。利用opencv实现简单的条形码检测与识别-C++语言实现。

资源截图

代码片段和文件信息

#include 
#include 
#include 

using namespace cv;
using namespace std;
using namespace zbar;

int main(int argcchar* argv[])
{
char fileNameString[100];
char windowNameString[50];
char resultFileNameSring[100];
Mat srcImagegrayImageblurImagethresholdImagegradientXImagegradientYImagegradientImagemorphImage;
for (int fileCount = 1;fileCount < 8;fileCount++)
{
sprintf(fileNameString“F:\\opencv\\条形码检测与识别\\barcode_0%d.jpg“fileCount);
sprintf(windowNameString“result 0%d“fileCount);
sprintf(resultFileNameSring“F:\\opencv\\条形码检测与识别\\barcodeResult_0%d.jpg“fileCount);
//读取图像
srcImage = imread(fileNameString);
if(srcImage.empty())
{
cout<<“image file read error“<
return -1;
}
//图像转换为灰度图像
if(srcImage.channels() == 3)
{
cvtColor(srcImagegrayImageCV_RGB2GRAY);
}
else
{
grayImage = srcImage.clone();
}
//建立图像的梯度幅值
Scharr(grayImagegradientXImageCV_32F10);
Scharr(grayImagegradientYImageCV_32F01);
//因为我们需要的条形码在需要X方向水平所以更多的关注X方向的梯度幅值而省略掉Y方向的梯度幅值
subtract(gradientXImagegradientYImagegradientImage);
//归一化为八位图像
convertScaleAbs(gradientImagegradientImage);
//看看得到的梯度图像是什么样子
//imshow(windowNameStringgradientImage);
//对图片进行相应的模糊化使一些噪点消除
blur(gradientImageblurImageSize(99));
//模糊化以后进行阈值化得到到对应的黑白二值化图像二值化的阈值可以根据实际情况调整
threshold(blurImagethresholdImage210255THRESH_BINARY);
//看看二值化图像
//imshow(windowNameStringthresholdImage);
//二值化以后的图像条形码之间的黑白没有连接起来就要进行形态学运算消除缝隙相当于小型的黑洞选择闭运算
//因为是长条之间的缝隙所以需要选择宽度大于长度
Mat kernel = getStructuringElement(MORPH_RECTSize(217));
morphologyEx(thresholdImagemorphImageMORPH_CLOSEkernel);
//看看形态学操作以后的图像
//imshow(windowNameStringmorphImage);
//现在要让条形码区域连接在一起所以选择膨胀腐蚀而且为了保持图形大小基本不变应该使用相同次数的膨胀腐蚀
//先腐蚀让其他区域的亮的地方变少最好是消除然后膨胀回来消除干扰迭代次数根据实际情况选择
erode(morphImage morphImage getStructuringElement(MORPH_RECT Size(33))Point(-1-1)4);
dilate(morphImage morphImage getStructuringElement(MORPH_RECT Size(33))Point(-1-1)4);
//看看形态学操作以后的图像
//imshow(windowNameStringmorphImage);
vector>contours;
vectorcontourArea;
//接下来对目标轮廓进行查找目标是为了计算图像面积
findContours(morphImagecontoursRETR_EXTERNALCHAIN_APPROX_SIMPLE);
//计算轮廓的面积并且存放
for(int i = 0; i < contours.size();i++)
{
contourArea.push_back(cv::contourArea(contours[i]));
}
//找出面积最大的轮廓
double maxValue;Point maxLoc;
minMaxLoc(contourArea NULL&maxValueNULL&maxLoc);
//计算面积最大的轮廓的最小的外包矩形
RotatedRect minRect = minAreaRect(contours[maxLoc.x]);
//为了防止找错要检查这个矩形的偏斜角度不能超标
//如果超标那就是没找到
if(minRect.angle<2.0)
{
//找到了矩形的角度但是这是一个旋转矩形所以还要重新获得一个外包最小矩形
Rect myRect = boundingRect(contours[maxLoc.x]);
//把这个矩形在源图像中画出来
//rectangle(srcImagemyRectScalar(0255255)3LINE_AA);
//看看显示效果找的对不对
//imshow(windowNameStringsrcImage);
//将扫描的图像裁剪下来并保存为相应的结果保留一些X方向的边界所以对rec

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     目录           0  2019-12-29 11:59  利用opencv实现的条形码检测与识别(C++)\
     文件      122315  2016-03-11 14:53  利用opencv实现的条形码检测与识别(C++)\barcode_01.jpg
     文件      104680  2016-03-11 16:27  利用opencv实现的条形码检测与识别(C++)\barcode_02.jpg
     文件      119950  2016-03-11 16:27  利用opencv实现的条形码检测与识别(C++)\barcode_03.jpg
     文件      118024  2016-03-11 16:27  利用opencv实现的条形码检测与识别(C++)\barcode_04.jpg
     文件      109951  2016-03-11 16:27  利用opencv实现的条形码检测与识别(C++)\barcode_05.jpg
     文件      120404  2016-03-11 16:27  利用opencv实现的条形码检测与识别(C++)\barcode_06.jpg
     文件       42683  2014-11-18 04:10  利用opencv实现的条形码检测与识别(C++)\barcode_07.jpg
     文件        4877  2016-03-15 10:40  利用opencv实现的条形码检测与识别(C++)\main.cpp

评论

共有 条评论