资源简介
基于深度学习识别人脸性别和年龄!C++/python代码
https://blog.csdn.net/LuohenYJ/article/details/88134634
代码片段和文件信息
# Import required modules
import cv2 as cv
import time
import argparse
def getFaceBox(net frame conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv.dnn.blobFromImage(frameOpencvDnn 1.0 (300 300) [104 117 123] True False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0 0 i 2]
if confidence > conf_threshold:
x1 = int(detections[0 0 i 3] * frameWidth)
y1 = int(detections[0 0 i 4] * frameHeight)
x2 = int(detections[0 0 i 5] * frameWidth)
y2 = int(detections[0 0 i 6] * frameHeight)
bboxes.append([x1 y1 x2 y2])
cv.rectangle(frameOpencvDnn (x1 y1) (x2 y2) (0 255 0) int(round(frameHeight/150)) 8)
return frameOpencvDnn bboxes
parser = argparse.ArgumentParser(description=‘Use this script to run age and gender recognition using OpenCV.‘)
parser.add_argument(‘--input‘ help=‘Path to input image or video file. Skip this argument to capture frames from a camera.‘)
args = parser.parse_args()
faceProto = “age_gender/model/opencv_face_detector.pbtxt“
faceModel = “age_gender/model/opencv_face_detector_uint8.pb“
ageProto = “age_gender/model/age_deploy.prototxt“
ageModel = “age_gender/model/age_net.caffemodel“
genderProto = “age_gender/model/gender_deploy.prototxt“
genderModel = “age_gender/model/gender_net.caffemodel“
MODEL_MEAN_VALUES = (78.4263377603 87.7689143744 114.895847746)
ageList = [‘(0-2)‘ ‘(4-6)‘ ‘(8-12)‘ ‘(15-20)‘ ‘(25-32)‘ ‘(38-43)‘ ‘(48-53)‘ ‘(60-100)‘]
genderList = [‘Male‘ ‘Female‘]
# Load network
ageNet = cv.dnn.readNet(ageModel ageProto)
genderNet = cv.dnn.readNet(genderModel genderProto)
faceNet = cv.dnn.readNet(faceModel faceProto)
# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
padding = 20
while cv.waitKey(1) < 0:
# Read frame
t = time.time()
hasframe frame = cap.read()
if not hasframe:
cv.waitKey()
break
frameFace bboxes = getFaceBox(faceNet frame)
if not bboxes:
print(“No face Detected Checking next frame“)
continue
for bbox in bboxes:
# print(bbox)
face = frame[max(0bbox[1]-padding):min(bbox[3]+paddingframe.shape[0]-1)max(0bbox[0]-padding):min(bbox[2]+padding frame.shape[1]-1)]
blob = cv.dnn.blobFromImage(face 1.0 (227 227) MODEL_MEAN_VALUES swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
# print(“Gender Output : {}“.format(genderPreds))
print(“Gender : {} conf = {:.3f}“.format(gender genderPreds[0].max()))
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print(“Age
相关资源
- 基于opencv的模板匹配代码
- opencv图片扫描以及校正
- opencv手部轮廓识别以及轨迹识别
- opencv2 3D标定.cpp
- 基于opencv漫水填充算法综合
- opencv激光中心线的提取
- OpenCV Computer Vision Application Programming
- 基于图割的图像分割OpenCV+MFC实现
- 识别魔方颜色
- opencv版俄罗斯方块源码
- VS2013 / MFC + OpenCV 2.4.9实现视频的播放
- 粒子滤波器+目标跟踪的C++实现,VS2
- 张平OpenCV算法精讲基于python和C++教材
- 虹膜识别开源代码OSIRIS4.1基于opencv
- Sift特征点提取与匹配opencv库
- YCbCr、混合高斯以及YCbCg肤色检测模型
- 光流法代码
- OpenCV打开摄像机显示在MFC窗口工程源
- 使用c++读取图像到二维矩阵
- 三维点云的圆柱面拟合
- MFC+OPENCV摄像机标定程序
- 基于特征脸的人脸识别MFC+OpenCV
- opencv图像处理MFC
- OPENCV人脸检测加角点检测并输出坐标
- FillHole.rar
- 道路提取算法 c++ opencv
- PCA代码实现详解
- opencv卡尔曼滤波
- SeamCarving opencv c++
- opencv prewitt边缘检测
评论
共有 条评论