资源简介
UKF 无迹卡尔曼滤波源程序 matlab 自己跑过,据对没问题
代码片段和文件信息
function [xEstPEstxPredPPredzPredinovationSK]=ukf(xEstPEstUQffunzRhfundtalphabetakappa);
% title : UNSCENTED KALMAN FILTER
%
% PURPOSE : This function performs one complete step of the unscented Kalman filter.
%
% SYNTAX : [xEstPEstxPredPPredzPredinovation]=ukf(xEstPEstUQffunzRhfundtalphabetakappa)
%
% INPUTS : - xEst : state mean estimate at time k
% - PEst : state covariance at time k
% - U : vector of control inputs
% - Q : process noise covariance at time k
% - z : observation at k+1
% - R : measurement noise covariance at k+1
% - ffun : process model function
% - hfun : observation model function
% - dt : time step (passed to ffun/hfun)
% - alpha (optional) : sigma point scaling parameter. Defaults to 1.
% - beta (optional) : higher order error scaling parameter. Default to 0.
% - kappa (optional) : scalar tuning parameter 1. Defaults to 0.
%
% OUTPUTS : - xEst : updated estimate of state mean at time k+1
% - PEst : updated state covariance at time k+1
% - xPred : prediction of state mean at time k+1
% - PPred : prediction of state covariance at time k+1
% - inovation : innovation vector
%
%
% NOTES : The process model is of the form x(k+1) = ffun[x(k)v(k)dtu(k)]
% where v(k) is the process noise vector. The observation model is
% of the form z(k) = hfun[x(k)w(k)dtu(k)] where w(k) is the
% observation noise vector.
%
% This code was written to be readable. There is significant
% scope for optimisation even in Matlab.
%
% Process defaults
if (nargin < 10)
alpha=1;
end;
if (nargin < 11)
beta=0;
end;
if (nargin < 12)
kappa=0;
end;
% Calculate the dimensions of the problem and a few useful
% scalars
states = size(xEst(:)1);
observations = size(z(:)1);
vNoise = size(Q2);
wNoise = size(R2);
noises = vNoise+wNoise;
% Augment the state vector with the noise vectors.
% Note: For simple additive noise models this part
% can be done differently to save on c
- 上一篇:基于MATLAB的排队问题仿真.PDF
- 下一篇:matlab 天气预报获取程序
相关资源
- UKF无迹卡尔曼滤波算法matlab代码
- 无迹kalman滤波
- EKFUKFPF2 三种滤波算法的比较
- 平方根无迹卡尔曼滤波算法程序
- 调通的ukfslam
- 基于当前模型的UKF matlab程序
- ukf无损卡尔曼滤波算法.m
- 平方根无迹卡尔曼滤波matlab代码
- UKF的MATLAB程序
- matlab UKF 状态估计软件包
- EKF/UKF工具箱
- EKFUKFmatlab程序比较
- 卡尔曼滤波EKF UKF PF对比matlab源程序
- imm ukf filter
- 1111 卡尔曼滤波、无迹卡尔曼滤波、扩
- UKF-GPS-IMU-MATLAB
- 3-d
- PSINS
- Inertial-Navigation-System-program 严恭敏老师
- ukf 经典的ukf跟踪框架与源码
- documentation 详细讲解了卡尔曼滤波器及
- EKFUKFCKkk EKF、UKF、CKF三种滤波算法的比
- EKF UKF CKF
- Matlab编写的无迹卡尔曼滤波器程序
- 非线性卡尔曼滤波
- UKFUnscented Kalman Filter) 无迹卡尔曼滤
- EKF,UKF和PF粒子滤波的性能
- UKF-CKF-EKF代码比较(matlab)
评论
共有 条评论