• 大小: 3KB
    文件类型: .m
    金币: 1
    下载: 0 次
    发布日期: 2021-06-18
  • 语言: Matlab
  • 标签: 神经网络  

资源简介

遗传算法改进BP人工神经网络,有利于大家将模式识别精度提高。

资源截图

代码片段和文件信息

%% 程序说明
% 主程序:ga_bp.m
% 适应度函数:gabpEval.m
% 编解码子函数:gadecod.m
% 使用前需安装gaot工具箱,上述三个文件需放在同一文件夹中且将该文件夹
% 设置为当前工作路径
% 运行程序时只需运行主程序ga_bp.m即可
% 此程序仅为示例,针对其他的问题,只需将数据修改即可,但需注意变量名
% 保持一致,尤其是全局变量修改时(在gadecod.m和gabpEval.m中也要修改)
% 版权归MATLAB中文论坛所有,转载请注明
%% 清除环境变量
clear all
clc
warning off 
nntwarn off
%% 声明全局变量
global p     % 训练集输入数据
global t     % 训练集输出数据
global R     % 输入神经元个数
global S2    % 输出神经元个数
global S1    % 隐层神经元个数
global S     % 编码长度
S1=25;
%% 导入数据

% 训练数据
day=[0.9363 -0.9698 -0.9907 -0.9562 -0.9507 0.9363 -0.9164 0.9045 0.8918;
 -0.9358 -0.9751 0.9821 -0.9544 -0.9469 0.9426 0.9182 0.8967 -0.8841;
0.9516 -0.9781 -0.9744 -0.9525 0.9509 0.9368 0.9082 -0.8903 -0.8665;
 -0.9480 -0.9795 -0.9796 -0.9507 0.9509 0.9300 -0.9075 -0.8902 -0.8671;
 -0.9433 -0.9923 -0.9812 -0.9596 -0.9406 -0.9230 0.9071 -0.8864 -0.8547;
 -0.9424 1.0000 -0.9800 -0.9514 0.9349 -0.9089 0.9206 -0.8780 -0.8414;
0.9355 -0.9878 -0.9737 -0.9499 0.9337 0.9084 -0.9072 -0.8745 -0.8332];
% 数据归一化
[daynmindaymaxday]=premnmx(day);
% 输入和输出样本
p=dayn(:1:8);
t=dayn(:2:9);
% 测试数据
k=[0.9435 0.9796 -0.9706 -0.9552 -0.9298 -0.9130 -0.9003 0.8708 0.8234;
    -0.9358 -0.9751 0.9821 -0.9544 -0.9469 0.9426 0.9182 0.8967 -0.8841;
0.9516 -0.9781 -0.9744 -0.9525 0.9509 0.9368 0.9082 -0.8903 -0.8665;
 -0.9480 -0.9795 -0.9796 -0.9507 0.9509 0.9300 -0.9075 -0.8902 -0.8671;
 -0.9433 -0.992

评论

共有 条评论