资源简介
用matlab实现的MPCA算法,需在matlab里安装张量工具包
代码片段和文件信息
function [tUs odrIdx TXmean Wgt] = MPCA(TXgndTXtestQmaxK)
% MPCA: Multilinear Principle Component Analysis
%
% %[Prototype]%
% function [tUs odrIdx TXmean Wgt] = MPCA(TXgndTXtestQmaxK)
%
% %[Author Notes]%
% Author: Haiping LU
% Email : hplu@ieee.org or eehplu@gmail.com
% Affiliation: Department of Electrical and Computer Engineering
% University of Toronto
% Release date: June 24 2008 (Version 1.1)
% Please email me if you have any problem question or suggestion
%
% %[Algorithm]%:
% This function implements the Multilinear Principal Component Analysis
% (MPCA) algorithm presented in the follwing paper:
% Haiping Lu K.N. Plataniotis and A.N. Venetsanopoulos
% “MPCA: Multilinear Principal Component Analysis of Tensor objects“
% IEEE Transactions on Neural Networks
% Vol. 19 No. 1 Page: 18-39 January 2008.
% Please reference this paper when reporting work done using this code.
%
% %[Toolbox needed]%:
% This function needs the tensor toolbox available at
% http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
%
% %[Syntax]%: [tUs odrIdx TXmean Wgt] = MPCA(TXgndTXtestQmaxK)
%
% %[Inputs]%:
% TX: the input training data in tensorial representation the last mode
% is the sample mode. For Nth-order tensor data TX is of
% (N+1)th-order with the (N+1)-mode to be the sample mode.
% E.g. 30x20x10x100 for 100 samples of size 30x20x10
% If your training data is too big resulting in the “out of memory“
% error you could work around this problem by reading samples one
% by one from the harddisk or you could email me for help.
%
% gndTX: the ground truth class labels (123...) for the training data
% E.g. a 100x1 vector if there are 100 samples
% If the class label is not available (unsupervised learning)
% please set gndTX=-1;
%
% testQ: the percentage of variation kept in each mode suggested value
% is 97 and you can try other values e.g. from 95 to 100 to
% see whether better performance can be obtained.
%
% maxK: the maximum number of iterations suggested value is 1 and you
% can try a larger value if computational time is not a concern.
%
% %[Outputs]%:
% tUs: the multilinear projection consiting of N
% projection matrices one for each mode
%
% odrIdx: the ordering index of projected features in decreasing
% variance (if unsupervised) or discriminality (if supervised)
% for vectorizing the projected tensorial features
%
% TXmean: the mean of the input training samples TX
%
% Wgt: the weight tensor for use in modified distance measures. Please
% refer to Section IV.B and IV.C of the paper.
%
% %[Supported tensor order]%
% This function supports N=234 for other order N please modify the
% codes accordingly or email hplu@ieee.org or eehplu@gmail.com fo
相关资源
- 实用化工计算机模拟--MATLAB在化学工程
- 使用matlab实现ICP点云匹配
- 杨氏双孔干涉实验的MATLAB计算机模拟
- 鱼雷控制系统计算机辅助分析设计与
- 计算机仿真技术与CAD——基于MATLAB的
- 《信号与系统》计算机练习+利用MAT
- 国外计算机科学经典教材 MATLAB科学计
- 《信号与系统》计算机练习 利用MAT
- 计算机视觉极线校正
- [奥本海姆]信号与系统(第二版).计
- 计算机网络-自顶向下方法英文版mob
- matlab中关于三维重建的源代码,《计
- 基于MATLAB的三相异步电机转速调节的
- 第二计算机语言MATLAB
- 东南大学计算机视觉实验报告二图像
- 薛定宇_控制系统计算机辅助设计——
- 三维重建sfm
- 区域增长(Region Growing)算法Matlab代码
- 光场深度估计MATLAB源代码
- [控制系统计算机辅助设计:MATLAB语言
- 深入理解计算机原理(英文版).mob
- CSAPP深入理解计算机系统 Kindle版本
- 基于计算机视觉的图像分割算法的研
- 数字信号处理——基于计算机的方法
-
MATLAB/Simuli
nk系统仿真李献 - 运动目标检测算法Matlab
- 数字信号处理---基于计算机方法 第四
- MATLAB计算机视觉与深度学习实战 完整
- 控制系统计算机辅助设计——MATLAB语
- Matlab神经网络原理与精讲
评论
共有 条评论