-
大小: 4KB文件类型: .py金币: 1下载: 0 次发布日期: 2021-05-12
- 语言: Python
- 标签: CNN TensorFlow 深度学习
资源简介
CNN卷积神经网络tensorflow代码,使用MNIST数据集,安装好python和TensorFlow可直接运行
代码片段和文件信息
from __future__ import print_function
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets(“/tmp/data/“ one_hot=True)
# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 128
display_step = 10
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32 [None n_input])
y = tf.placeholder(tf.float32 [None n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x W b strides=1):
# Conv2D wrapper with bias and relu activation
x = tf.nn.conv2d(x W strides=[1 strides strides 1] padding=‘SAME‘)
x = tf.nn.bias_add(x b)
return tf.nn.relu(x)
def maxpool2d(x k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x ksize=[1 k k 1] strides=[1 k k 1]
padding=‘SAME‘)
# Create model
def conv_net(x weights biases dropout):
# Reshape input picture
x = tf.reshape(x shape=[-1 28 28 1])
# Convolution layer
conv1 = conv2d(x weights[‘wc1‘] biases[‘bc1‘])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1 k=2)
# Convolution layer
conv2 = conv2d(conv1 weights[‘wc2‘] biases[‘bc2‘])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2 k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2 [-1 weights[‘wd1‘].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1 weights[‘wd1‘]) biases[‘bd1‘])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1 dropout)
# Output class prediction
out = tf.add(tf.matmul(fc1 weights[‘out‘]) biases[‘out‘])
return out
# Store layers weight & bias
weights = {
# 5x5 conv 1 input 32 outputs
‘wc1‘: tf.Variable(tf.random_normal([5 5 1 32]))
# 5x5 conv 32 inputs 64 outputs
‘wc2‘: tf.Variable(tf.random_normal
相关资源
- autoencoder自编码器tensorflow代码
- Tensorflow笔记-中国大学全部讲义源代码
- DeepLab-ResNet-101
- 基于tensorflow的二分类的python实现注释
- tensorflow的ckpt文件转pb模型文件
- tensorflow-C3D-ucf101网络
- lstm_tensorflow
- 《TensorFlow2深度学习》
- TensorFlow Python API documentation.pdf
- Python-使用最新版本的tensorflow实现se
- 卷积神经网络(CNN)源码
- BP神经网络及代码分析(python+tensorf
- Python-用TensorFlow实现神经网络实体关系
- Practical Computer Vision Applications Using D
- 莫烦全部代码Reinforcement-learning-with-
- minist+CNN+交叉验证
- Python-基于TensorFlow和BERT的管道式实体
- Tensorflow gpu_accelerate
- python tensorFlow AND和XOR
- word2vec.py(来自黄文坚的“tensorflow实
- faster Rcnn(python)demo
- keras+tensorflow CNN
- 基于机器学习框架tensorflow的图像分类
- 基于MTCNN实现制作脸部VOC格式数据集
- 机器学习实战:基于 Scikit-Learn 和 T
- 《白话深度学习与TensorFlow》.pdf
- Tensorflow+实战Google深度学习框架
- mnist_CNN 深度学习小
- python MNIST分类 tensorflow
- python卷积神经网络实现
评论
共有 条评论