资源简介
matlab版本在2015以下的有可能会出问题
代码片段和文件信息
function varargout = demo(varargin)
% DEMO MATLAB code for demo.fig
% DEMO by itself creates a new DEMO or raises the existing
% singleton*.
%
% H = DEMO returns the handle to a new DEMO or the handle to
% the existing singleton*.
%
% DEMO(‘CALLBACK‘hobjecteventDatahandles...) calls the local
% function named CALLBACK in DEMO.M with the given input arguments.
%
% DEMO(‘Property‘‘Value‘...) creates a new DEMO or raises the
% existing singleton*. Starting from the left property value pairs are
% applied to the GUI before demo_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to demo_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE‘s Tools menu. Choose “GUI allows only one
% instance to run (singleton)“.
%
% See also: GUIDE GUIDATA GUIHANDLES
% Edit the above text to modify the response to help demo
% Last Modified by GUIDE v2.5 27-Oct-2016 19:53:15
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name‘ ‘KNN_demo‘ ...
‘gui_Singleton‘ gui_Singleton ...
‘gui_OpeningFcn‘ @demo_OpeningFcn ...
‘gui_OutputFcn‘ @demo_OutputFcn ...
‘gui_LayoutFcn‘ [] ...
‘gui_Callback‘ []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State varargin{:});
else
gui_mainfcn(gui_State varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before demo is made visible.
function demo_OpeningFcn(hobject eventdata handles varargin)
% This function has no output args see OutputFcn.
% hobject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to demo (see VARARGIN)
% Choose default command line output for demo
global mIsEditingIcon mIconCData
mIsEditingIcon=false;
mIconCData=nan(28283);
cols=28;
rows=28;
s = findobj(handles.uipanel1‘type‘‘surface‘);
if isempty(s)
gridColor = get(0 ‘defaultuicontrolbackgroundcolor‘) - 0.2;
gridColor(gridColor<0)=0;
s=surface(‘edgecolor‘gridColor‘parent‘handles.axes1);
end
%set xdata ydata zdata in case the rows and/or cols change
set(s‘xdata‘0:cols‘ydata‘0:rows‘zdata‘zeros(rows+1cols+1)‘cdata‘nan(28283));
handles.output = hobject;
set(handles.axes1‘drawmode‘‘fast‘‘xlim‘[-.5 28+.5]‘ylim‘[-.5 28+.5]);
axis(handles.axes1 ‘ij‘ ‘off‘);
% Update handles structure
guidata(hobject handles);
% UIWAIT makes demo wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = demo_OutputFcn(hobject e
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2016-10-27 20:48 KNN_demo\
文件 8538 2016-10-27 20:40 KNN_demo\demo.m
文件 22424 2016-10-27 20:17 KNN_demo\KNN_demo.fig
文件 294 2016-10-27 20:52 KNN_demo\readme.txt
文件 249573 2016-10-27 20:20 KNN_demo\train_Features.mat
文件 236 2016-10-27 20:20 KNN_demo\train_Labels.mat
- 上一篇:高电压技术-气隙局部放电simuli
nk仿真 - 下一篇:SLIC的源码
相关资源
- Matlab机器学习WKNN,加权K近邻,含有数
- K近邻算法、剪辑近邻、压缩近邻等算
- matlab代码KNN,层次聚类,C均值,最邻
- KNN算法的Matlab实现
- KNN,Matlab代码
- matlab-KNN分类器
- KNN算法代码
- SVM+SFS+KNN+SBS+LASSO+SRC算法matlab版
- 基于LDA(fisherface)和KNN的人脸识别
- knn matting 国外写的knn-matting
- knn算法matlab实现
- 基于近邻KNN算法的分类器matlab实现
- 用KNN仿真WiFi室内定位
- pca_knn 本方法采用pca进行特征提取
- text-classification 分别使用最近邻(KN
- knnsearch 利用matlab实现就近点邻域寻找
- Fingerprint-localization--code 室内指纹定位
- adaboostPknnPlbp
- KNN算法matlab,wine分类
- MATLAB中KNN聚类方法
- KNN search
- 基于matlab数据挖掘分类算法研究,十
评论
共有 条评论