资源简介
matlab代码,描述了在一维信号前提下,对粒子滤波器和卡尔曼滤波的跟踪效果做比较
代码片段和文件信息
function ParticleEx1
% Particle filter example adapted from Gordon Salmond and Smith paper.
x = 0.1; % initial state
Q = 1; % process noise covariance
R = 1; % measurement noise covariance
tf = 50; % simulation length
N = 100; % number of particles in the particle filter
xhat = x;
P = 2;
xhatPart = x;
% Initialize the particle filter.
for i = 1 : N
xpart(i) = x + sqrt(P) * randn;
end
xArr = [x];
yArr = [x^2 / 20 + sqrt(R) * randn];
xhatArr = [x];
PArr = [P];
xhatPartArr = [xhatPart];
close all;
for k = 1 : tf
% System simulation
x = 0.5 * x + 25 * x / (1 + x^2) + 8 * cos(1.2*(k-1)) + sqrt(Q) * randn;%状态方程
y = x^2 / 20 + sqrt(R) * randn;%观测方程
% Extended Kalman filter
F = 0.5 + 25 * (1 - xhat^2) / (1 + xhat^2)^2;
P = F * P * F‘ + Q;
H = xhat / 10;
K = P * H‘ * (H * P * H‘ + R)^(-1);
xhat = 0.5 * xhat + 25 * xhat / (1 + xhat^2) + 8 * cos(1.2*(k-1));%预测
xhat = xhat + K * (y - xhat^2 / 20);%更新
P = (1 - K * H) * P;
% Particle filter
for i = 1 : N
xpartminus(i) = 0.5 * xpart(i) + 25 * xpart(i) / (1 + xpart(i)^2) + 8 * cos(1.2*(k-1)) + sqrt(Q) * randn;
ypart = xpartminus(i)^2 / 20;
vhat = y - ypart;%观测和预测的差
q(i) = (1 / sqrt(R) / sqrt(2*pi)) * exp(-vhat^2 / 2 / R);
end
% Normalize the likelihood of each a priori estimate.
qsum = sum(q);
for i = 1 : N
q(i) = q(i) / qsum;%归一化权重
end
% Resample.
for i = 1 : N
u = rand; % uniform random number between 0 and 1
qtempsum = 0;
for j = 1 : N
qtempsum = qtempsum + q(j);
if qtempsum >= u
xpart(i) = xpartminus(j);
break;
end
end
end
% The particle filter estimate is the mean of the particles.
xhatPart = mean(xpart);
% Plot the estimated pdf‘s at a specific time.
if k == 20
% Particle filter pdf
pdf = zeros(811);
for m = -40 : 40
for i = 1 : N
if (m <= xpart(i)) && (xpart(i) < m+1)
pdf(m+41) = pdf(m+41) + 1;
end
end
end
figure;
m = -40 : 40;
plot(m pdf / N ‘r‘);
hold;
title(‘Estimated pdf at k=20‘);
disp([‘min max xpart(i) at k = 20: ‘ num2str(min(xpart)) ‘ ‘ num2str(max(xpart))]);
% Kalman filter pdf
pdf = (1 / sqrt(P) / sqrt(2*pi)) .* exp(-(m - xhat).^2 / 2 / P);
plot(m pdf ‘b‘);
legend(‘Particle filter‘ ‘Kalman filter‘);
end
% Save data in arrays for later plotting
xArr = [xArr x];
yArr = [yArr y];
xhatArr = [xhatArr xhat];
PArr = [PArr P];
xhatPartArr = [xhatPartArr xhatPart];
end
t = 0 : tf;
%figure;
%plot(t xArr);
%ylabel(‘true state‘);
figure;
plot(t xArr ‘b.‘ t xhatArr ‘k-‘);
axis([0 tf -40 40]);
set(gca‘FontSize‘12); set(gc
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 183 2009-02-02 09:47 Particle Filter VS Kalman Filter\Matlab中文论坛--助努力的人完成毕业设计.url
文件 3543 2009-02-01 16:19 Particle Filter VS Kalman Filter\使用帮助:新手必看.htm
文件 28672 2008-07-04 10:52 Particle Filter VS Kalman Filter\粒子滤波 目标跟踪 一维情况下 非线性非高斯\Doc1.doc
文件 3573 2013-04-02 10:57 Particle Filter VS Kalman Filter\粒子滤波 目标跟踪 一维情况下 非线性非高斯\ParticleEx1.asv
文件 3549 2013-04-02 11:00 Particle Filter VS Kalman Filter\粒子滤波 目标跟踪 一维情况下 非线性非高斯\ParticleEx1.m
文件 158 2009-05-24 09:58 Particle Filter VS Kalman Filter\说明.txt
目录 0 2013-04-02 10:57 Particle Filter VS Kalman Filter\粒子滤波 目标跟踪 一维情况下 非线性非高斯
目录 0 2013-04-01 14:51 Particle Filter VS Kalman Filter
----------- --------- ---------- ----- ----
39678 8
相关资源
-
卡尔曼滤波器在simuli
nk 中的实现 - 卡尔曼滤波器的PID控制
- 基于卡尔曼滤波算法的雷达追踪算法
- 基于卡尔曼滤波的目标跟踪matlab经典
- 扩展卡尔曼滤波器的matlab代码
- 很易懂的卡尔曼滤波器讲解,附带S
- EKF扩展卡尔曼滤波车身状态估计
- 卡尔曼滤波器matlab
- 基于扩展卡尔曼滤波的电池soc估计s
- ukf无损卡尔曼滤波算法.m
- GPS接受机中的卡尔曼滤波MATLAB代码
- 卡尔曼滤波课程8次matlab仿真作业
- CT模型机动目标圆周运动跟踪
- 卡尔曼滤波(Kalman)Matlab工具箱
- 平方根无迹卡尔曼滤波matlab代码
- 卡尔曼滤波的MATLAB实现
- 卡尔曼滤波-Matlab程序
- 卡尔曼滤波器的实现
- 惯性导航扩展卡尔曼滤波MATLAB
- 卡尔曼滤波matlab
- 基于卡尔曼滤波理论设计的航母甲板
- 经典卡尔曼滤波 目标跟踪 matlab 程序
- 卡尔曼推导流程记录和一个matlab例程
- matlab ar模型卡尔曼滤波代码
- AOA定位的扩展卡尔曼滤波定位算法M
- 卡尔曼滤波EKF UKF PF对比matlab源程序
- matlab 实现语音增强含维纳滤波、谱减
- 基于三阶RC的卡尔曼滤波SOC估算模型
- 基于卡尔曼滤波的soc估计程序
-
扩展卡尔曼滤波SOC算法Simuli
nk模型
评论
共有 条评论