• 大小: 5KB
    文件类型: .m
    金币: 1
    下载: 0 次
    发布日期: 2021-06-07
  • 语言: Matlab
  • 标签: BP  神经网络  

资源简介

大数据时代的来临让我们体会到了信息高速带给我们的便捷,从大数据中提取我们需要的信息变成我们现在的迫切需求。而神经网络作为大数据中经典算法之一,是我们有必要掌握的,而BP算法作为神经网络的初级算法,是我们学好其它神经网络算法的基础。本代码经过测试,可以直接运行

资源截图

代码片段和文件信息

function main()
clc                          % 清屏
clear all;                  %清除内存以便加快运算速度
close all;                  %关闭当前所有figure图像
SamNum=20;                  %输入样本数量为20
TestSamNum=20;              %测试样本数量也是20
ForcastSamNum=2;            %预测样本数量为2
HiddenUnitNum=8;            %中间层隐节点数量取8比工具箱程序多了1个
InDim=3;                    %网络输入维度为3
OutDim=2;                   %网络输出维度为2

%原始数据 
%人数(单位:万人)
sqrs=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ...
       41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
%机动车数(单位:万辆)
sqjdcs=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6...
        2.7 2.85 2.95 3.1];
%公路面积(单位:万平方公里)
sqglmj=[0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 
         0.56 0.59 0.59 0.67 0.69 0.79];
%公路客运量(单位:万人)
glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ...
        22598 25107 33442 36836 40548 42927 43462];
%公路货运量(单位:万吨)
glhyl=[1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ...
        13320 16762 18673 20724 20803 21804];
p=[sqrs;sqjdcs;sqglmj];  %输入数据矩阵
t=[glkyl;glhyl];           %目标数据矩阵
[SamInminpmaxptnmintmaxt]=premnmx(pt); %原始样本对(输入和输出)初始化

rand(‘state‘sum(100*clock))   %依据系统时钟种子产生随机数         
NoiseVar=0.01;                    %噪声强度为0.01(添加噪声的目的是为了防止网络过度拟合)
Noise=NoiseVar*randn(2SamNum);   %生成噪声
SamOut=tn + Noise;                   %将噪声添加到输出样本上

TestSamIn=SamIn;                           %这里取输入样本与测试样本相同因为样本容量偏少
TestSamOut=SamOut;                         %也取输出样本与测试样本相同

MaxEpochs=50000;                              %最多训练次数为50000
lr=0.035;                                       %学习速率为0.035
E0=0.65*10^(-3);                              %目标误差为0.65*10^(-3)
W1=0.5*rand(HiddenUnitNumInDim)-0.1;   %初始化输入层与隐含层之间的权值
B1=0.5*rand(HiddenUnitNum1)-0.1;       %初始化输入层与隐含层之间的阈值
W2=0.5*rand(OutDimHiddenUnitNum)-0.1; %初始化输出层与隐含层之间的权值           

评论

共有 条评论